Polarization insensitive frequency conversion for an atom-photon entanglement distribution via a telecom network

Long-lifetime quantum storages accessible to the telecom photonic infrastructure are essential to long-distance quantum communication. Atomic quantum storages have achieved subsecond storage time corresponding to 1000 km transmission time for a telecom photon through a quantum repeater algorithm. However, the telecom photon cannot be directly interfaced to typical atomic storages. Solid-state quantum frequency conversions fill this wavelength gap. Here we report on the experimental demonstration of a polarization-insensitive solid-state quantum frequency conversion to a telecom photon from a short-wavelength photon entangled with an atomic ensemble. Atom–photon entanglement has been generated with a Rb atomic ensemble and the photon has been translated to telecom range while retaining the entanglement by our nonlinear-crystal-based frequency converter in a Sagnac interferometer.Quantum repeater-based communication requires the ability to interface good quantum memories to telecom photons. Here, the authors report polarization-insensitive frequency conversion to telecom wavelength of a photon entangled with a Rb ensemble, preserving the entanglement in the process.

[1]  Angelo Gulinatti,et al.  Two-photon interference using background-free quantum frequency conversion of single photons emitted by an InAs quantum dot. , 2012, Physical review letters.

[2]  Y. O. Dudin,et al.  Long-lived quantum memory , 2009 .

[3]  J. Cirac,et al.  Long-distance quantum communication with atomic ensembles and linear optics , 2001, Nature.

[4]  Andreas Christ,et al.  From quantum pulse gate to quantum pulse shaper—engineered frequency conversion in nonlinear optical waveguides , 2011, 1101.6060.

[5]  B. Shi,et al.  Coherent frequency bridge between visible and telecommunications band for vortex light. , 2017, Optics express.

[6]  Shenmin Zhang,et al.  Experimental entanglement of 25 individually accessible atomic quantum interfaces , 2017, Science Advances.

[7]  Nobuyuki Matsuda,et al.  Deterministic reshaping of single-photon spectra using cross-phase modulation , 2016, Science Advances.

[8]  Masahide Sasaki,et al.  Frequency down-conversion of 637 nm light to the telecommunication band for non-classical light emitted from NV centers in diamond. , 2014, Optics express.

[9]  Anton Zeilinger,et al.  Polarization-entanglement-conserving frequency conversion of photons , 2011, 1106.1867.

[10]  M. Koashi,et al.  A low-noise frequency down-conversion to the telecommunication band for a quantum communication based on NV centers in diamond , 2014, 1402.2944.

[11]  Christian Hepp,et al.  Visible-to-telecom quantum frequency conversion of light from a single quantum emitter. , 2012, Physical review letters.

[12]  Todd A. Brun,et al.  Quantum Computing , 2011, Computer Science, The Hardware, Software and Heart of It.

[13]  Logan G. Wright,et al.  Spectral compression of single photons , 2013, Nature Photonics.

[14]  O. Alibart,et al.  A photonic quantum information interface , 2005, Nature.

[15]  Shigehito Miki,et al.  Stable, high-performance operation of a fiber-coupled superconducting nanowire avalanche photon detector. , 2017, Optics express.

[16]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[17]  Bo Zhao,et al.  Efficient and long-lived quantum memory with cold atoms inside a ring cavity , 2012, Nature Physics.

[18]  Pedram Khalili Amiri,et al.  Quantum computers , 2003 .

[19]  Sven Ramelow,et al.  Ramsey Interference with Single Photons. , 2016, Physical review letters.

[20]  G. Rempe,et al.  An elementary quantum network of single atoms in optical cavities , 2012, Nature.

[21]  Jian-Wei Pan,et al.  Experimental demonstration of a BDCZ quantum repeater node , 2008, Nature.

[22]  Masato Koashi,et al.  Local transformation of two einstein-podolsky-rosen photon pairs into a three-photon w state. , 2008, Physical review letters.

[23]  Shigeki Takeuchi,et al.  Realization of a Knill-Laflamme-Milburn controlled-NOT photonic quantum circuit combining effective optical nonlinearities , 2010, Proceedings of the National Academy of Sciences.

[24]  E. Knill,et al.  Diluted maximum-likelihood algorithm for quantum tomography , 2006, quant-ph/0611244.

[25]  K. Luo,et al.  Quantum Frequency Conversion between Infrared and Ultraviolet , 2016, 1610.03239.

[26]  J. Herskowitz,et al.  Proceedings of the National Academy of Sciences, USA , 1996, Current Biology.

[27]  H. Briegel,et al.  Measurement-based quantum computation , 2009, 0910.1116.

[28]  M. Fejer,et al.  Multidimensional mode-separable frequency conversion for high-speed quantum communication , 2016, 1606.07794.

[29]  A. Kuzmich,et al.  Entanglement of light-shift compensated atomic spin waves with telecom light. , 2010, Physical review letters.

[30]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[31]  Masato Koashi,et al.  Frequency-domain Hong–Ou–Mandel interference , 2016, Nature Photonics.

[32]  M. Koashi,et al.  Mach-Zehnder interferometer using frequency-domain beamsplitter. , 2017, Optics express.

[33]  Christian Schneider,et al.  Quantum-dot spin–photon entanglement via frequency downconversion to telecom wavelength , 2012, Nature.

[34]  F. Nori,et al.  Natural and artificial atoms for quantum computation , 2010, 1002.1871.

[35]  Kevin J. Resch,et al.  Frequency and bandwidth conversion of single photons in a room-temperature diamond quantum memory , 2016, Nature Communications.

[36]  Y-F Pu,et al.  Experimental realization of a multiplexed quantum memory with 225 individually accessible memory cells , 2017, Nature Communications.

[37]  Note: a monolithic filter cavity for experiments in quantum optics. , 2012, The Review of scientific instruments.

[38]  Christine Silberhorn,et al.  Highly efficient frequency conversion with bandwidth compression of quantum light , 2016, Nature Communications.

[39]  Andrew G. White,et al.  Measurement of qubits , 2001, quant-ph/0103121.

[40]  Hiroki Takesue,et al.  Erasing distinguishability using quantum frequency up-conversion. , 2008, Physical review letters.

[41]  Nicolas Gisin,et al.  Quantum repeaters based on atomic ensembles and linear optics , 2009, 0906.2699.

[42]  H. Weinfurter,et al.  Heralded Entanglement Between Widely Separated Atoms , 2012, Science.

[43]  H. Riedmatten,et al.  Nonclassical correlations between a C-band telecom photon and a stored spin-wave , 2016, 1607.01350.

[44]  Jian-Wei Pan,et al.  An efficient quantum light–matter interface with sub-second lifetime , 2015, Nature Photonics.

[45]  C. Kurtsiefer,et al.  Experimental Polarization State Tomography using Optimal Polarimeters , 2006, quant-ph/0603126.

[46]  Charles H. Bennett,et al.  Concentrating partial entanglement by local operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[47]  P. Kumar,et al.  Quantum frequency conversion. , 1990, Optics letters.

[48]  B. Lanyon,et al.  Polarisation-preserving photon frequency conversion from a trapped-ion-compatible wavelength to the telecom C-band , 2017, Applied Physics B.

[49]  Masahide Sasaki,et al.  High-fidelity conversion of photonic quantum information to telecommunication wavelength with superconducting single-photon detectors , 2012, 1207.1585.

[50]  G. Corrielli,et al.  Quantum frequency conversion of quantum memory compatible photons to telecommunication wavelengths. , 2013, Optics express.

[51]  Fast time-domain measurements on telecom single photons , 2017, 1702.03240.

[52]  Christoph Becher,et al.  High-fidelity entanglement between a trapped ion and a telecom photon via quantum frequency conversion , 2017, Nature Communications.

[53]  Lijun Ma,et al.  Quantum Transduction of Telecommunications-band Single Photons from a Quantum Dot by Frequency Upconversion , 2010, 1004.2686.

[54]  Archil Avaliani,et al.  Quantum Computers , 2004, ArXiv.

[55]  C. Becher,et al.  Coherence and entanglement preservation of frequency-converted heralded single photons. , 2017, Optics express.

[56]  C J McKinstrie,et al.  Quantum frequency translation of single-photon states in a photonic crystal fiber. , 2010, Physical review letters.

[57]  Oliver Benson,et al.  Heralded wave packet manipulation and storage of a frequency-converted pair photon at telecom wavelength , 2017 .

[58]  Masato Koashi,et al.  Optimal local expansion ofWstates using linear optics and Fock states , 2010, 1004.0608.

[59]  M. Koashi,et al.  Heralded single excitation of atomic ensemble via solid-state-based telecom photon detection , 2016, 1607.01465.

[60]  H M Wiseman,et al.  Quantum optical waveform conversion. , 2010, Physical review letters.

[61]  Wolfgang Dür,et al.  Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication , 1998 .

[62]  N. Gisin,et al.  Experimental entanglement distillation and ‘hidden’ non-locality , 2001, Nature.

[63]  Masato Koashi,et al.  Wide-band quantum interface for visible-to-telecommunication wavelength conversion. , 2011, Nature communications.

[64]  Jörg Schmiedmayer,et al.  Demonstration of a stable atom-photon entanglement source for quantum repeaters. , 2007, Physical review letters.