Automating Transfer Function Design for Volume Rendering Using Hierarchical Clustering of Material Boundaries

Transfer function design plays a crucial role in direct volume rendering. Furthermore, it has a major influence on the efficiency of the visualization process. We have developed a framework that facilitates the semi-automatic design of transfer functions. Similarly to other approaches we generate clusters in the transfer function domain. We created a real-time interaction with a hierarchy of clusters. This interaction effectively substitutes cumbersome settings of clustering thresholds. Our framework is also able to easily combine different clustering criteria. We have developed two similarity measures for clustering of material boundaries. One is based on the similarity of the boundaries in the transfer function domain and the other on their spatial relation. We use the LH space as the transfer function domain. This space facilitates the clustering of material boundaries. We demonstrate our approach on several examples.

[1]  David G. Stork,et al.  Pattern classification, 2nd Edition , 2000 .

[2]  Kwan-Liu Ma,et al.  RGVis: Region Growing Based Visualization Techniques for Volume Visualization , 2003 .

[3]  Joe Michael Kniss,et al.  Interactive volume rendering using multi-dimensional transfer functions and direct manipulation widgets , 2001, Proceedings Visualization, 2001. VIS '01..

[4]  Rafael Wiemker,et al.  Fast detection of meaningful isosurfaces for volume data visualization , 2001, Proceedings Visualization, 2001. VIS '01..

[5]  G. Kindlmann,et al.  Semi-automatic generation of transfer functions for direct volume rendering , 1998, IEEE Symposium on Volume Visualization (Cat. No.989EX300).

[6]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[7]  Paul A. Beardsley,et al.  Design galleries: a general approach to setting parameters for computer graphics and animation , 1997, SIGGRAPH.

[8]  Hanspeter Pfister,et al.  Generation of transfer functions with stochastic search techniques , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[9]  Anders Ynnerman,et al.  Eurographics -ieee Vgtc Symposium on Visualization (2005) Extending and Simplifying Transfer Function Design in Medical Volume Rendering Using Local Histograms , 2022 .

[10]  Kwan-Liu Ma,et al.  RGVis: region growing based techniques for volume visualization , 2003, 11th Pacific Conference onComputer Graphics and Applications, 2003. Proceedings..

[11]  Eduard Gröller,et al.  Mastering Transfer Function Specification by using VolumePro Technology , 2000 .

[12]  Valerio Pascucci,et al.  The contour spectrum , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[13]  Kwan-Liu Ma,et al.  A cluster-space visual interface for arbitrary dimensional classification of volume data , 2004, VISSYM'04.

[14]  Kwan-Liu Ma,et al.  Lighting transfer functions using gradient aligned sampling , 2004, IEEE Visualization 2004.

[15]  Joe Michael Kniss,et al.  Statistically quantitative volume visualization , 2005, VIS 05. IEEE Visualization, 2005..

[16]  Hanspeter Pfister,et al.  The VolumePro real-time ray-casting system , 1999, SIGGRAPH.

[17]  Marc Stamminger,et al.  Spatialized Transfer Functions , 2005, EuroVis.

[18]  Kwan-Liu Ma,et al.  An intelligent system approach to higher-dimensional classification of volume data , 2005, IEEE Transactions on Visualization and Computer Graphics.

[19]  Gordon L. Kindlmann,et al.  Semi-Automatic Generation of Transfer Functions for Direct Volume Rendering , 1998, VVS.

[20]  Joe Michael Kniss,et al.  Multidimensional Transfer Functions for Interactive Volume Rendering , 2002, IEEE Trans. Vis. Comput. Graph..

[21]  Yuriko Takeshima,et al.  Automating transfer function design for comprehensible volume rendering based on 3D field topology analysis , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[22]  Anna Vilanova,et al.  Visualization of boundaries in volumetric data sets using LH histograms , 2006, IEEE Transactions on Visualization and Computer Graphics.