Structures, stabilities, electronic, and optical properties of C64 fullerene isomers, anions (C  642− and C644−), metallofullerene Sc2@C64, and Sc2C2@C64

The 3465 classical isomers of C64 fullerene have been investigated by quantum chemical methods PM3, and the most stable isomers have been refined with HCTH/3‐21G//SVWN/STO‐3G, B3LYP/6‐31G(d)//HCTH/3‐21G, and B3LYP/6‐311G(d)//B3LYP/6‐31G(d) level. C64(D2:0003) with the lowest e55 (e55 = 2), the number of pentagon‐pentagon fusions, is predicted to be the most stable isomer and it is followed by the C64(Cs:0077) and C64(C2:0103) isomers within relative energy of 20.0 kcal/mol. C64(D2:0003) prevails in a wide temperature range according to energy analysis with entropy contribution at B3LYP/6‐31G(d) level. The simulated IR spectra and electronic spectra help to identify different fullerene isomers. All the hexagons in the isomers with e55 = 2 display local aromaticity. The relative stabilities of C64 isomers change with charging in ionic states. Doping also affects the relative stabilities of fullerene isomers as demonstrated by Sc2@C64(D2:0003) and Sc2@C64(Cs:0077). The bonding of Sc atoms with C64 elongates the CC bond of two adjacent pentagons and enhances the local aromaticity of the fullerene cages. Charging, doping, and derativization can be utilized to isolate C64 isomers through differentiating the electronic and steric effects. © 2008 Wiley Periodicals, Inc. J Comput Chem 2008

[1]  S. H. Vosko,et al.  Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis , 1980 .

[2]  J. Stewart Optimization of parameters for semiempirical methods I. Method , 1989 .

[3]  De-Li Chen,et al.  C68 fullerene isomers, anions, and their metallofullerenes: charge-stabilizing different isomers. , 2008, Chemphyschem : a European journal of chemical physics and physical chemistry.

[4]  L. Curtiss,et al.  Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint , 1988 .

[5]  Li-Jun Wan,et al.  C64H4: production, isolation, and structural characterizations of a stable unconventional fulleride. , 2006, Journal of the American Chemical Society.

[6]  Lothar Dunsch,et al.  Violating the isolated pentagon rule (IPR): the endohedral non-IPR C70 cage of Sc3N@C70. , 2007, Angewandte Chemie.

[7]  R. King,et al.  Spherical aromaticity: recent work on fullerenes, polyhedral boranes, and related structures. , 2005, Chemical reviews.

[8]  P. Eklund,et al.  Fullerene Polymers and Fullerene Polymer Composites , 2000 .

[9]  P. Schleyer,et al.  Dissected Nucleus-Independent Chemical Shift Analysis of π-Aromaticity and Antiaromaticity. , 2001, Organic letters.

[10]  Andreas W. M. Dress,et al.  A Constructive Enumeration of Fullerenes , 1997, J. Algorithms.

[11]  Xin Lu,et al.  La2@C72 and Sc2@C72: computational characterizations. , 2006, The journal of physical chemistry. A.

[12]  Z. Kafafi,et al.  Optical and electronic properties of fullerenes and fullerene-based materials , 2000 .

[13]  W. Krätschmer,et al.  Solid C60: a new form of carbon , 1990, Nature.

[14]  E. Hajdu,et al.  Materials science: A stable non-classical metallofullerene family , 2000, Nature.

[15]  Ji-Kang Feng,et al.  Quantum chemical calculations on the spectra and nonlinear third-order optical susceptibility of C60 , 1993 .

[16]  S. C. O'brien,et al.  C60: Buckminsterfullerene , 1985, Nature.

[17]  L. Adamowicz,et al.  Computed structures and relative stabilities of Be@C74 , 2007 .

[18]  B. Yakobson,et al.  Real time microscopy, kinetics, and mechanism of giant fullerene evaporation. , 2007, Physical review letters.

[19]  Xu Zhang,et al.  Capturing the Labile Fullerene[50] as C50Cl10 , 2004, Science.

[20]  Zdeněk Slaninaj,et al.  Equilibrium isomeric mixtures: potential energy hypersurfaces as the origin of the overall thermodynamics and kinetics , 1987 .

[21]  Tianming Zuo,et al.  Tb3N@C84: an improbable, egg-shaped endohedral fullerene that violates the isolated pentagon rule. , 2006, Journal of the American Chemical Society.

[22]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[23]  Lothar Dunsch,et al.  The role of an asymmetric nitride cluster on a fullerene cage: the non-IPR endohedral DySc2N@C76. , 2007, The journal of physical chemistry. B.

[24]  Structures, electronic properties, spectroscopies, and hexagonal monolayer phase of a family of unconventional fullerenes C64X4 (X = H, F, Cl, Br) , 2008, 0801.3333.

[25]  Yuriko Aoki,et al.  Search for suitable approximation methods for fullerene structure and relative stability studies: case study with C50. , 2006, The Journal of chemical physics.

[26]  D. Manolopoulos,et al.  An Atlas of Fullerenes , 1995 .

[27]  J. Aihara,et al.  Reduced HOMO−LUMO Gap as an Index of Kinetic Stability for Polycyclic Aromatic Hydrocarbons , 1999 .

[28]  Douglas J. Klein,et al.  Elemental carbon cages , 1988 .

[29]  Peter Pulay,et al.  Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations , 1990 .

[30]  A. Daniel Boese,et al.  A new parametrization of exchange–correlation generalized gradient approximation functionals , 2001 .

[31]  Xin Lu,et al.  Isolation and characterization of Sc2C2@C68: a metal-carbide endofullerene with a non-IPR carbon cage. , 2006, Angewandte Chemie.

[32]  M. Zerner,et al.  Theoretical studies on the structure and electronic spectra of some isomeric fullerene derivatives C60On (n=2, 3) , 2000 .

[33]  Hisanori Shinohara,et al.  Structure of a missing-caged metallofullerene: La2@C72. , 2003, Journal of the American Chemical Society.

[34]  Yuji Kobayashi,et al.  Materials science: C66 fullerene encaging a scandium dimer , 2000, Nature.

[35]  H. W. Kroto,et al.  The stability of the fullerenes Cn, with n = 24, 28, 32, 36, 50, 60 and 70 , 1987, Nature.

[36]  Patrick W. Fowler,et al.  Increasing cost of pentagon adjacency for larger fullerenes , 1996 .

[37]  S. Nagase,et al.  La@C72 having a non-IPR carbon cage. , 2006, Journal of the American Chemical Society.

[38]  John E. Carpenter,et al.  Analysis of the geometry of the hydroxymethyl radical by the “different hybrids for different spins” natural bond orbital procedure , 1988 .

[39]  P. Schleyer,et al.  Study on the optical and magnetic properties of C48N12 azafullerene isomers , 2004 .