Hyperbolic Graph Topic Modeling Network with Continuously Updated Topic Tree

Connectivity across documents often exhibits a hierarchical network structure. Hyperbolic Graph Neural Networks (HGNNs) have shown promise in preserving network hierarchy. However, they do not model the notion of topics, thus document representations lack semantic interpretability. On the other hand, a corpus of documents usually has high variability in degrees of topic specificity. For example, some documents contain general content (e.g., sports), while others focus on specific themes (e.g., basketball and swimming). Topic models indeed model latent topics for semantic interpretability, but most assume a flat topic structure and ignore such semantic hierarchy. Given these two challenges, we propose a Hyperbolic Graph Topic Modeling Network to integrate both network hierarchy across linked documents and semantic hierarchy within texts into a unified HGNN framework. Specifically, we construct a two-layer document graph. Intra- and cross-layer encoding captures network hierarchy. We design a topic tree for text decoding to preserve semantic hierarchy and learn interpretable topics. Supervised and unsupervised experiments verify the effectiveness of our model.

[1]  Hady W. Lauw,et al.  Variational Graph Author Topic Modeling , 2022, KDD.

[2]  Lin Gui,et al.  Hierarchical Interpretation of Neural Text Classification , 2022, Computational Linguistics.

[3]  Shirui Pan,et al.  Pseudo-Riemannian Graph Convolutional Networks , 2021, NeurIPS.

[4]  Pan Du,et al.  Graph Topic Neural Network for Document Representation , 2021, WWW.

[5]  Chuan Shi,et al.  Lorentzian Graph Convolutional Networks , 2021, WWW.

[6]  Huan Liu,et al.  Be More with Less: Hypergraph Attention Networks for Inductive Text Classification , 2020, EMNLP.

[7]  Trung Le,et al.  Neural Topic Model via Optimal Transport , 2020, ICLR.

[8]  Danushka Bollegala,et al.  Tree-Structured Neural Topic Model , 2020, ACL.

[9]  Xiaochun Cao,et al.  Graph Attention Topic Modeling Network , 2020, WWW.

[10]  Ce Zhang,et al.  Topic Modeling on Document Networks with Adjacent-Encoder , 2020, AAAI.

[11]  Christopher De Sa,et al.  Differentiating through the Fréchet Mean , 2020, ICML.

[12]  Xien Liu,et al.  Tensor Graph Convolutional Networks for Text Classification , 2020, AAAI.

[13]  Yanfang Ye,et al.  Hyperbolic Graph Attention Network , 2019, IEEE Transactions on Big Data.

[14]  Octavian-Eugen Ganea,et al.  Mixed-curvature Variational Autoencoders , 2019, ICLR.

[15]  Octavian-Eugen Ganea,et al.  Constant Curvature Graph Convolutional Networks , 2019, ICML.

[16]  Douwe Kiela,et al.  Hyperbolic Graph Neural Networks , 2019, NeurIPS.

[17]  Jure Leskovec,et al.  Hyperbolic Graph Convolutional Neural Networks , 2019, NeurIPS.

[18]  David M. Blei,et al.  Topic Modeling in Embedding Spaces , 2019, Transactions of the Association for Computational Linguistics.

[19]  Lan Du,et al.  Dirichlet belief networks for topic structure learning , 2018, NeurIPS.

[20]  Zenglin Xu,et al.  Neural Relational Topic Models for Scientific Article Analysis , 2018, CIKM.

[21]  Yuan Luo,et al.  Graph Convolutional Networks for Text Classification , 2018, AAAI.

[22]  Pietro Liò,et al.  Graph Attention Networks , 2017, ICLR.

[23]  Jure Leskovec,et al.  Inductive Representation Learning on Large Graphs , 2017, NIPS.

[24]  Douwe Kiela,et al.  Poincaré Embeddings for Learning Hierarchical Representations , 2017, NIPS.

[25]  Charles A. Sutton,et al.  Autoencoding Variational Inference For Topic Models , 2017, ICLR.

[26]  Max Welling,et al.  Semi-Supervised Classification with Graph Convolutional Networks , 2016, ICLR.

[27]  Xuanjing Huang,et al.  Recurrent Neural Network for Text Classification with Multi-Task Learning , 2016, IJCAI.

[28]  Zhe Gan,et al.  Deep Poisson Factor Modeling , 2015, NIPS.

[29]  Phil Blunsom,et al.  Neural Variational Inference for Text Processing , 2015, ICML.

[30]  Zhe Gan,et al.  Scalable Deep Poisson Factor Analysis for Topic Modeling , 2015, ICML.

[31]  Hady Wirawan Lauw,et al.  Probabilistic Latent Document Network Embedding , 2014, 2014 IEEE International Conference on Data Mining.

[32]  Yoon Kim,et al.  Convolutional Neural Networks for Sentence Classification , 2014, EMNLP.

[33]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[34]  Jeffrey Dean,et al.  Distributed Representations of Words and Phrases and their Compositionality , 2013, NIPS.

[35]  Chong Wang,et al.  Nested Hierarchical Dirichlet Processes , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[36]  Stefan Evert,et al.  Google Web 1T 5-Grams Made Easy (but not for the computer) , 2010, WAC@NAACL-HLT.

[37]  Jure Leskovec,et al.  Meme-tracking and the dynamics of the news cycle , 2009, KDD.

[38]  David M. Blei,et al.  Relational Topic Models for Document Networks , 2009, AISTATS.

[39]  Jie Tang,et al.  ArnetMiner: extraction and mining of academic social networks , 2008, KDD.

[40]  Thomas L. Griffiths,et al.  The nested chinese restaurant process and bayesian nonparametric inference of topic hierarchies , 2007, JACM.

[41]  Yihong Gong,et al.  Combining content and link for classification using matrix factorization , 2007, SIGIR.

[42]  Wei Li,et al.  Pachinko allocation: DAG-structured mixture models of topic correlations , 2006, ICML.

[43]  Thomas L. Griffiths,et al.  Hierarchical Topic Models and the Nested Chinese Restaurant Process , 2003, NIPS.

[44]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[45]  Andrew McCallum,et al.  Automating the Construction of Internet Portals with Machine Learning , 2000, Information Retrieval.

[46]  Hady W. Lauw,et al.  Dynamic Topic Models for Temporal Document Networks , 2022, ICML.

[47]  Hady W. Lauw,et al.  Meta-Complementing the Semantics of Short Texts in Neural Topic Models , 2022, Neural Information Processing Systems.

[48]  Tuan M. V. Le,et al.  Neural Topic Models for Hierarchical Topic Detection and Visualization , 2021, ECML/PKDD.

[49]  Jihong Ouyang,et al.  Layer-Assisted Neural Topic Modeling over Document Networks , 2021, IJCAI.

[50]  Hui Xiong,et al.  Topic Modeling Revisited: A Document Graph-based Neural Network Perspective , 2021, NeurIPS.

[51]  Hady W. Lauw,et al.  Semi-supervised Semantic Visualization for Networked Documents , 2021, ECML/PKDD.

[52]  Xiaolin Li,et al.  GraphBTM: Graph Enhanced Autoencoded Variational Inference for Biterm Topic Model , 2018, EMNLP.

[53]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .