Fraction-Free Computation of Matrix Rational Interpolants and Matrix GCDs

We present a new set of algorithms for computation of matrix rational interpolants and one-sided matrix greatest common divisors. Examples of these interpolants include Pade approximants, Newton--Pade, Hermite--Pade, and simultaneous Pade approximants, and more generally M-Pade approximants along with their matrix generalizations. The algorithms are fast and compute all solutions to a given problem. Solutions for all (possibly singular) subproblems along offdiagonal paths in a solution table are also computed by stepping around singular blocks on a path corresponding to "closest" regular interpolation problems. The algorithms are suitable for computation in exact arithmetic domains where growth of coefficients in intermediate computations is a central concern. This coefficient growth is avoided by using fraction-free methods. At the same time, the methods are fast in the sense that they are at least an order of magnitude faster than existing fraction-free methods for the corresponding problems. The methods make use of linear systems having a special striped Krylov structure.

[1]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[2]  Ali H. Sayed,et al.  Stabilizing the Generalized Schur Algorithm , 1996, SIAM J. Matrix Anal. Appl..

[3]  Thomas Kailath,et al.  Fast Gaussian elimination with partial pivoting for matrices with displacement structure , 1995 .

[4]  Keith O. Geddes,et al.  Algorithms for computer algebra , 1992 .

[5]  George Labahn,et al.  The Inverses of Block Hankel and Block Toeplitz Matrices , 1990, SIAM J. Comput..

[6]  Stefan Paszkowski Hermite-Pade´ approximation (basic notions and theorems) , 1990 .

[7]  Stanley Cabay,et al.  Algebraic Computations of Scaled Padé Fractions , 1986, SIAM J. Comput..

[8]  S. Cabay,et al.  A weakly stable algorithm for Pade´ approximants and the inversion of Hankel matrices , 1993 .

[9]  Stefan Paszkowski,et al.  Recurrence relations in Padé-Hermite approximation , 1987 .

[10]  George Labahn,et al.  Fraction-free computation of matrix Padé systems , 1997, ISSAC.

[11]  M. G. Bruin,et al.  A uniform approach for the fast computation of Matrix-type Padé approximants , 1996 .

[12]  Joseph F. Traub,et al.  On Euclid's Algorithm and the Theory of Subresultants , 1971, JACM.

[13]  H. Zha,et al.  A look-ahead algorithm for the solution of general Hankel systems , 1993 .

[14]  Vadim Olshevsky,et al.  Pivoting for structured matrices with applications , 1997 .

[15]  PSIG BIGPSI,et al.  AN ALGORITHM FOR A GENERALIZATION OF THE RICHARDSON EXTRAPOLATION PROCESS , 2022 .

[16]  Ming Gu,et al.  Stable and Efficient Algorithms for Structured Systems of Linear Equations , 1998, SIAM J. Matrix Anal. Appl..

[17]  Donald E. Knuth,et al.  The Art of Computer Programming, Vol. 2 , 1981 .

[18]  Gilles Villard,et al.  Computing Popov and Hermite forms of polynomial matrices , 1996, ISSAC '96.

[19]  George Labahn,et al.  Matrix Padé Fractions and Their Computation , 1989, SIAM J. Comput..

[20]  Bernhard Beckermann,et al.  A reliable method for computing M-Pade´ approximants on arbitrary staircases , 1992 .

[21]  Adam W. Bojanczyk,et al.  On the stability of the Bareiss and related Toeplitz factorization algorithms , 2010, SIAM J. Matrix Anal. Appl..

[22]  George Labahn,et al.  Shifted normal forms of polynomial matrices , 1999, ISSAC '99.

[23]  David Y. Y. Yun,et al.  Fast Solution of Toeplitz Systems of Equations and Computation of Padé Approximants , 1980, J. Algorithms.

[24]  George Labahn,et al.  Recursiveness in matrix rational interpolation problems , 1997 .

[25]  Marlis Hochbruck,et al.  Look-ahead Levinson and Schur algorithms for non-Hermitian Toeplitz systems , 1995 .

[26]  E. Bareiss Sylvester’s identity and multistep integer-preserving Gaussian elimination , 1968 .

[27]  George Labahn,et al.  Computation of Numerical Padé-Hermite and Simultaneous Padé Systems II: A Weakly Stable Algorithm , 1996, SIAM J. Matrix Anal. Appl..

[28]  B. Anderson,et al.  Greatest common divisor via generalized Sylvester and Bezout matrices , 1978 .

[29]  S. Liberty,et al.  Linear Systems , 2010, Scientific Parallel Computing.

[30]  Roland W. Freund,et al.  Formally biorthogonal polynomials and a look-ahead Levinson algorithm for general Teoplitz systems , 1993 .

[31]  B. Beckermann,et al.  A Uniform Approach for the Fast Computation of Matrix-Type Padé Approximants , 1994, SIAM J. Matrix Anal. Appl..

[32]  Georg Heinig,et al.  Algebraic Methods for Toeplitz-like Matrices and Operators , 1984 .

[33]  Bruno Salvy,et al.  GFUN: a Maple package for the manipulation of generating and holonomic functions in one variable , 1994, TOMS.

[34]  Adhemar Bultheel,et al.  A matrix Euclidean algorithm and the matrix minimal Padé approximation problem , 1990 .

[35]  George Labahn,et al.  On the theory and computation of nonperfect Pade´-Hermite approximants , 1992 .

[36]  Keith O. Geddes,et al.  A Comparison of Algorithms for the Symbolic Computation of Padé Approximants , 1984, EUROSAM.

[37]  Bernhard Beckermann,et al.  The structure of the singular solution table of the M-Pade´ approximation problem , 1990 .

[38]  Martin H. Gutknecht,et al.  Stable row recurrences for the Padé table and generically superfast lookahead solvers for non-Hermitian Toeplitz systems , 1993 .

[39]  Adhemar Bultheel,et al.  A lookahead algorithm for the solution of block toeplitz systems , 1997 .

[40]  Stanley Cabay,et al.  Power Series Remainder Sequences and Pade Fractions Over an Integral Domain , 1990, J. Symb. Comput..

[41]  Mark van Hoeij,et al.  Factorization of Differential Operators with Rational Functions Coefficients , 1997, J. Symb. Comput..

[42]  E CollinsGeorge Subresultants and Reduced Polynomial Remainder Sequences , 1967 .

[43]  George Labahn,et al.  Inversion components of block Hankel-like matrices , 1992 .

[44]  M. Morf,et al.  A generalized resultant matrix for polynomial matrices , 1976, 1976 IEEE Conference on Decision and Control including the 15th Symposium on Adaptive Processes.