Construction of crystal structure prototype database: methods and applications

Crystal structure prototype data have become a useful source of information for materials discovery in the fields of crystallography, chemistry, physics, and materials science. This work reports the development of a robust and efficient method for assessing the similarity of structures on the basis of their interatomic distances. Using this method, we proposed a simple and unambiguous definition of crystal structure prototype based on hierarchical clustering theory, and constructed the crystal structure prototype database (CSPD) by filtering the known crystallographic structures in a database. With similar method, a program structure prototype analysis package (SPAP) was developed to remove similar structures in CALYPSO prediction results and extract predicted low energy structures for a separate theoretical structure database. A series of statistics describing the distribution of crystal structure prototypes in the CSPD was compiled to provide an important insight for structure prediction and high-throughput calculations. Illustrative examples of the application of the proposed database are given, including the generation of initial structures for structure prediction and determination of the prototype structure in databases. These examples demonstrate the CSPD to be a generally applicable and useful tool for materials discovery.

[1]  Yanming Ma,et al.  Catenation of carbon in LaC2 predicted under high pressure. , 2016, Physical chemistry chemical physics : PCCP.

[2]  Quan Li,et al.  CALYPSO structure prediction method and its wide application , 2016 .

[3]  Ali Sadeghi,et al.  A fingerprint based metric for measuring similarities of crystalline structures. , 2015, The Journal of chemical physics.

[4]  Yanming Ma,et al.  Perspective: crystal structure prediction at high pressures. , 2014, The Journal of chemical physics.

[5]  Marco Buongiorno Nardelli,et al.  AFLOWLIB.ORG: A distributed materials properties repository from high-throughput ab initio calculations , 2012 .

[6]  Li Zhu,et al.  CALYPSO: A method for crystal structure prediction , 2012, Comput. Phys. Commun..

[7]  Peter Moeck,et al.  Crystallography Open Database (COD): an open-access collection of crystal structures and platform for world-wide collaboration , 2011, Nucleic Acids Res..

[8]  Claire S. Adjiman,et al.  Towards crystal structure prediction of complex organic compounds – a report on the fifth blind test , 2011, Acta crystallographica. Section B, Structural science.

[9]  Anubhav Jain,et al.  A high-throughput infrastructure for density functional theory calculations , 2011 .

[10]  Torbjörn Björkman,et al.  CIF2Cell: Generating geometries for electronic structure programs , 2011, Comput. Phys. Commun..

[11]  A. Oganov,et al.  Crystal fingerprint space--a novel paradigm for studying crystal-structure sets. , 2010, Acta crystallographica. Section A, Foundations of crystallography.

[12]  Yanchao Wang,et al.  Crystal structure prediction via particle-swarm optimization , 2010 .

[13]  Stefan Goedecker,et al.  Crystal structure prediction using the minima hopping method. , 2010, The Journal of chemical physics.

[14]  Anubhav Jain,et al.  Finding Nature’s Missing Ternary Oxide Compounds Using Machine Learning and Density Functional Theory , 2010 .

[15]  Rudolf Allmann,et al.  The introduction of structure types into the Inorganic Crystal Structure Database ICSD , 2007, Acta crystallographica. Section A, Foundations of crystallography.

[16]  Nikolaus Hansen,et al.  USPEX - Evolutionary crystal structure prediction , 2006, Comput. Phys. Commun..

[17]  Gerbrand Ceder,et al.  Predicting crystal structure by merging data mining with quantum mechanics , 2006, Nature materials.

[18]  J. C. Schön,et al.  CMPZ– an algorithm for the efficient comparison of periodic structures , 2006 .

[19]  P Verwer,et al.  Method for the computational comparison of crystal structures. , 2005, Acta crystallographica. Section B, Structural science.

[20]  Robert E. Newnham,et al.  Properties of Materials: Anisotropy, Symmetry, Structure , 2005 .

[21]  Shuichi Iwata,et al.  The Pauling File, Binaries Edition , 2004 .

[22]  Kristin A. Persson,et al.  Predicting crystal structures with data mining of quantum calculations. , 2003, Physical review letters.

[23]  R. Downs Topology of the pyroxenes as a function of temperature, pressure, and composition as determined from the procrystal electron density , 2003 .

[24]  P. Luksch,et al.  New developments in the Inorganic Crystal Structure Database (ICSD): accessibility in support of materials research and design. , 2002, Acta crystallographica. Section B, Structural science.

[25]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[26]  Johann Gasteiger,et al.  Deriving the 3D structure of organic molecules from their infrared spectra , 1999 .

[27]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[28]  H. Burzlaff,et al.  A Procedure for the Clasification of Non‐Organic Crystal Structures. I. Theoretical Background , 1997 .

[29]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[30]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[31]  F. Allen,et al.  The crystallographic information file (CIF) : a new standard archive file for crystallography , 1991 .

[32]  J. Pannetier,et al.  Prediction of crystal structures from crystal chemistry rules by simulated annealing , 1990, Nature.

[33]  E. Makovicky,et al.  Nomenclature of inorganic structure types. Report of the International Union of Crystallography Commission on Crystallographic Nomenclature Subcommittee on the Nomenclature of Inorganic Structure Types , 1990 .

[34]  L. K. Templeton,et al.  X‐ray dichroism and anomalous scattering of potassium tetrachloroplatinate(II) , 1985 .

[35]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[36]  I. D. Brown,et al.  The inorganic crystal structure data base , 1983, J. Chem. Inf. Comput. Sci..

[37]  F. Allen,et al.  The Cambridge Crystallographic Data Centre: computer-based search, retrieval, analysis and display of information , 1979 .

[38]  G J Williams,et al.  The Protein Data Bank: a computer-based archival file for macromolecular structures. , 1978, Archives of biochemistry and biophysics.

[39]  N. Grant,et al.  The crystal structures of VNi2, VPd2 VPt2, and related AB2 phases , 1965 .