Predictive Lossless Compression of Regions of Interest in Hyperspectral Images With No-Data Regions

This paper addresses the problem of efficient predictive lossless compression on the regions of interest (ROIs) in the hyperspectral images with no-data regions. We propose a two-stage prediction scheme, where a context-similarity-based weighted average prediction is followed by recursive least square filtering to decorrelate the hyperspectral images for compression. We then propose to apply separate Golomb-Rice codes for coding the prediction residuals of the full-context pixels and boundary pixels, respectively. To study the coding gains of this separate coding scheme, we introduce a mixture geometric model to represent the residuals associated with various combinations of the full-context pixels and boundary pixels. Both information-theoretic analysis and simulations on synthetic data confirm the advantage of the separate coding scheme over the conventional coding method based on a single underlying geometric distribution. We apply the aforementioned prediction and coding methods to four publicly available hyperspectral image data sets, attaining significant improvements over several other state-of-the-art methods, including the shape-adaptive JPEG 2000 method.

[1]  Luisa Verdoliva,et al.  Costs and Advantages of Object-Based Image Coding with Shape-Adaptive Wavelet Transform , 2007, EURASIP J. Image Video Process..

[2]  Giovanni Motta,et al.  Low-complexity lossless compression of hyperspectral imagery via linear prediction , 2005, IEEE Signal Processing Letters.

[3]  Jun Tian,et al.  Embedded Image Coding Using Wavelet Difference Reduction , 2002 .

[4]  Joan Bartrina-Rapesta,et al.  JPEG2000 Encoding of Remote Sensing Multispectral Images With No-Data Regions , 2010, IEEE Geoscience and Remote Sensing Letters.

[5]  Yi Wang,et al.  A novel method for lossless compression of arbitrarily shaped regions of interest in hyperspectral imagery , 2015, SoutheastCon 2015.

[6]  Enrico Magli Multiband Lossless Compression of Hyperspectral Images , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[7]  Enrico Magli,et al.  Optimized onboard lossless and near-lossless compression of hyperspectral data using CALIC , 2004, IEEE Geoscience and Remote Sensing Letters.

[8]  Guillermo Sapiro,et al.  The LOCO-I lossless image compression algorithm: principles and standardization into JPEG-LS , 2000, IEEE Trans. Image Process..

[9]  James E. Fowler,et al.  Embedded wavelet-based compression of hyperspectral imagery using tarp coding , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[10]  W. Marsden I and J , 2012 .

[11]  R. E. Roger,et al.  Lossless compression of AVIRIS images , 1996, IEEE Trans. Image Process..

[12]  James E. Fowler,et al.  Coding of ocean-temperature volumes using binary set splitting with k-d trees , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[13]  Luciano Alparone,et al.  Lossless compression of multi/hyper-spectral imagery based on a 3-D fuzzy prediction , 1999, IEEE Trans. Geosci. Remote. Sens..

[14]  Weifeng Liu,et al.  Kernel Adaptive Filtering: A Comprehensive Introduction , 2010 .

[15]  Joan L. Mitchell,et al.  JPEG: Still Image Data Compression Standard , 1992 .

[16]  Xing Zhao,et al.  Spectral–Spatial Classification of Hyperspectral Data Based on Deep Belief Network , 2015, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[17]  Matthew A. Klimesh,et al.  Low-complexity lossless compression of hyperspectral imagery via adaptive filtering , 2005 .

[18]  S. Golomb Run-length encodings. , 1966 .

[19]  Weifeng Liu,et al.  Kernel Adaptive Filtering , 2010 .

[20]  Lorenzo Bruzzone,et al.  Classification of hyperspectral remote sensing images with support vector machines , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[21]  William A. Pearlman,et al.  Hyperspectral image compression using three-dimensional wavelet coding , 2003, IS&T/SPIE Electronic Imaging.

[22]  Bormin Huang,et al.  Lossless Compression of Hyperspectral Imagery via Clustered Differential Pulse Code Modulation with Removal of Local Spectral Outliers , 2015, IEEE Signal Processing Letters.

[23]  Bormin Huang,et al.  Lossless Compression of Hyperspectral Images Using Clustered Linear Prediction With Adaptive Prediction Length , 2012, IEEE Geoscience and Remote Sensing Letters.

[24]  Yin-Tsung Hwang,et al.  An Efficient Lossless Compression Scheme for Hyperspectral Images Using Two-Stage Prediction , 2010, IEEE Geoscience and Remote Sensing Letters.

[25]  Giovanni Motta,et al.  High performance compression of hyperspectral imagery with reduced search complexity in the compressed domain , 2004, Data Compression Conference, 2004. Proceedings. DCC 2004.

[26]  Shipeng Li,et al.  Shape-adaptive discrete wavelet transforms for arbitrarily shaped visual object coding , 2000, IEEE Trans. Circuits Syst. Video Technol..

[27]  Jean-Michel Morel,et al.  A non-local algorithm for image denoising , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[28]  Ian Blanes,et al.  Performance impact of parameter tuning on the CCSDS-123 lossless multi- and hyperspectral image compression standard , 2013 .

[29]  Solomon W. Golomb,et al.  Run-length encodings (Corresp.) , 1966, IEEE Trans. Inf. Theory.

[30]  Touradj Ebrahimi,et al.  The JPEG 2000 still image compression standard , 2001, IEEE Signal Process. Mag..

[31]  Zixiang Xiong,et al.  3-D wavelet coding of video with arbitrary regions of support , 1999, Conference Record of the Thirty-Third Asilomar Conference on Signals, Systems, and Computers (Cat. No.CH37020).