Progressive Algorithms for Domination and Independence

We consider a generic algorithmic paradigm that we call progressive exploration, which can be used to develop simple and efficient parameterized graph algorithms. We identify two model-theoretic properties that lead to efficient progressive algorithms, namely variants of the Helly property and stability. We demonstrate our approach by giving linear-time fixed-parameter algorithms for the distance-r dominating set problem (parameterized by the solution size) in a wide variety of restricted graph classes, such as powers of nowhere dense classes, map graphs, and (for $r=1$) biclique-free graphs. Similarly, for the distance-r independent set problem the technique can be used to give a linear-time fixed-parameter algorithm on any nowhere dense class. Despite the simplicity of the method, in several cases our results extend known boundaries of tractability for the considered problems and improve the best known running times.

[1]  Saharon Shelah,et al.  Classification theory - and the number of non-isomorphic models, Second Edition , 1990, Studies in logic and the foundations of mathematics.

[2]  Jaroslav Nesetril,et al.  First order properties on nowhere dense structures , 2010, The Journal of Symbolic Logic.

[3]  Erik D. Demaine,et al.  Fixed-parameter algorithms for (k, r)-center in planar graphs and map graphs , 2005, TALG.

[4]  Rolf Niedermeier,et al.  Fixed-Parameter Algorithms for Kemeny Scores , 2008, AAIM.

[5]  Zhi-Zhong Chen,et al.  Map graphs , 1999, JACM.

[6]  Hans Adler,et al.  Interpreting nowhere dense graph classes as a classical notion of model theory , 2014, Eur. J. Comb..

[7]  Zhi-Zhong Chen,et al.  Approximation Algorithms for Independent Sets in Map Graphs , 2000, J. Algorithms.

[8]  Robin Thomas,et al.  Testing first-order properties for subclasses of sparse graphs , 2011, JACM.

[9]  Jan Arne Telle,et al.  FPT Algorithms for Domination in Biclique-Free Graphs , 2012, ESA.

[10]  Mikkel Thorup Map graphs in polynomial time , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[11]  Bruno Courcelle,et al.  The Monadic Second-Order Logic of Graphs X: Linear Orderings , 1996, Theor. Comput. Sci..

[12]  Anand Pillay,et al.  Closed Sets and Chain Conditions in Stable Theories , 1984, J. Symb. Log..

[13]  Michal Pilipczuk,et al.  Kernelization and approximation of distance-r independent sets on nowhere dense graphs , 2018, ArXiv.

[14]  M. Biskup,et al.  LECTURE NOTES FOR THE COURSE , 2014 .

[15]  Bruno Courcelle,et al.  The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite Graphs , 1990, Inf. Comput..

[16]  Allen O’Hara An Introduction to Equations and Equational Theories , 2011 .

[17]  Stephan Kreutzer,et al.  Neighborhood complexity and kernelization for nowhere dense classes of graphs , 2016, ICALP.

[18]  Stephan Kreutzer,et al.  Domination Problems in Nowhere-Dense Classes , 2009, FSTTCS.

[19]  Stephan Kreutzer,et al.  Parameterized Complexity of First-Order Logic , 2009, Electron. Colloquium Comput. Complex..

[20]  Stephan Kreutzer,et al.  Kernelization and Sparseness: the case of Dominating Set , 2014, STACS.

[21]  Jaroslav Nesetril,et al.  Sparsity - Graphs, Structures, and Algorithms , 2012, Algorithms and combinatorics.

[22]  BENJAMIN OYE,et al.  STABLE GRAPHS , 2017 .

[23]  Michal Pilipczuk,et al.  On the number of types in sparse graphs , 2017, LICS.

[24]  Jaroslav Nesetril,et al.  On nowhere dense graphs , 2011, Eur. J. Comb..