Log-Transform Kernel Density Estimation of Income Distribution

Standard kernel density estimation methods are very often used in practice to estimate density function. It works well in numerous cases. However, it is known not to work so well with skewed, multimodal and heavy-tailed distributions. Such features are usual with income distributions, defined over the positive support. We first show that a preliminary logarithmic transformation of the data, combined with standard kernel density estimation methods, can provide a much better fit of the overall density estimation. Then, we show that the fit of the bottom of the distribution may not be satisfactory, even if a better fit of the upper tail can be obtained in general.

[1]  J. Nielsen,et al.  Kernel density estimation for heavy-tailed distributions using the champernowne transformation , 2005 .

[2]  J. Marron,et al.  Simultaneous Density Estimation of Several Income Distributions , 1992, Econometric Theory.

[3]  Luc Devroye,et al.  Nonparametric Density Estimation , 1985 .

[4]  M. Rudemo Empirical Choice of Histograms and Kernel Density Estimators , 1982 .

[5]  Matthew P. Wand,et al.  Kernel Smoothing , 1995 .

[6]  Olivier Scaillet,et al.  Density estimation using inverse and reciprocal inverse Gaussian kernels , 2004 .

[7]  Roger Koenker,et al.  Adaptive $L$-Estimation for Linear Models , 1989 .

[8]  C. D. Kemp,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[9]  M. Stone,et al.  Cross‐Validatory Choice and Assessment of Statistical Predictions , 1976 .

[10]  F. Cowell,et al.  Income distribution and inequality measurement: The problem of extreme values , 2007 .

[11]  O. Scaillet,et al.  Local Multiplicative Bias Correction for Asymmetric Kernel Density Estimators , 2003 .

[12]  K. B. Kulasekera,et al.  Density estimation using asymmetric kernels and Bayes bandwidths with censored data , 2010 .

[13]  Song-xi Chen,et al.  Beta kernel estimators for density functions , 1999 .

[14]  Taoufik Bouezmarni,et al.  Nonparametric density estimation for multivariate bounded data , 2007 .

[15]  Emmanuel Flachaire,et al.  Statistical Methods for Distributional Analysis , 2015 .

[16]  O. Scaillet,et al.  CONSISTENCY OF ASYMMETRIC KERNEL DENSITY ESTIMATORS AND SMOOTHED HISTOGRAMS WITH APPLICATION TO INCOME DATA , 2005, Econometric Theory.

[17]  Russell Davidson,et al.  Statistical Inference in the Presence of Heavy Tails , 2012 .

[18]  Arthur Charpentier,et al.  Beta kernel quantile estimators of heavy-tailed loss distributions , 2010, Stat. Comput..

[19]  K. Abadir,et al.  Optimal Asymmetric Kernels , 2004 .

[20]  R. Davidson,et al.  Asymptotic and Bootstrap Inference for Inequality and Poverty Measures , 2007 .

[21]  A. Bowman,et al.  Applied smoothing techniques for data analysis : the kernel approach with S-plus illustrations , 1999 .

[22]  Ibrahim Ahamada,et al.  Non-Parametric Econometrics , 2011 .

[23]  N. Markovich Nonparametric analysis of univariate heavy-tailed data , 2007 .

[24]  J. Marron,et al.  Transformations to reduce boundary bias in kernel density estimation , 1994 .

[25]  Ronald K. Pearson,et al.  Mining imperfect data - dealing with contamination and incomplete records , 2005 .

[26]  M. C. Jones,et al.  A reliable data-based bandwidth selection method for kernel density estimation , 1991 .

[27]  S. Kotz,et al.  Statistical Size Distributions in Economics and Actuarial Sciences , 2003 .

[28]  Wolfgang Härdle,et al.  Applied Nonparametric Regression , 1991 .

[29]  D. W. Scott,et al.  Multivariate Density Estimation, Theory, Practice and Visualization , 1992 .

[30]  J. Simonoff Smoothing Methods in Statistics , 1998 .

[31]  Song-xi Chen,et al.  Probability Density Function Estimation Using Gamma Kernels , 2000 .