Magnon flatband effect in antiferromagnetically coupled magnonic crystals

The dispersion relationships in antiferromagnetically coupled magnonic crystals (MCs) were investigated using micromagnetic simulations. In contrast to traditional MCs, antiferromagnetically coupled MCs have two oppositely polarized modes, enabling the realization of synthetic ferrimagnetic and synthetic antiferromagnetic MCs. The magnon flatband effect was discovered, and a large bandgap of the dispersion relation was also realized in this structure. We found that the center frequency and width of the dispersion bands with a specific polarization were influenced by the thickness and thickness ratio of the spin-up and spin-down magnetic sublattices. Based on these results, spin-wave filtering devices were proposed. Our study uncovered the magnon dispersion relations of a type of MC, which provides fresh insights into the development of ultra-efficient magnonic devices.

[1]  Y. Xing,et al.  Inverse design of magnonic filter , 2022, Journal of Magnetism and Magnetic Materials.

[2]  Yunshan Cao,et al.  All-magnonic Stern–Gerlach effect in antiferromagnets , 2022, Applied Physics Letters.

[3]  F. Ma,et al.  Skyrmion based magnonic crystals , 2021, Journal of Applied Physics.

[4]  L. Vila,et al.  Voltage-Controlled Reconfigurable Magnonic Crystal at the Sub-micrometer Scale. , 2021, ACS nano.

[5]  B. Ivanov,et al.  Coherent spin-wave transport in an antiferromagnet , 2021, Nature Physics.

[6]  S. Ladak,et al.  Observation of Coherent Spin Waves in a Three-Dimensional Artificial Spin Ice Structure , 2021, Nano letters.

[7]  Philipp Pirro,et al.  Inverse-design magnonic devices , 2020, Nature Communications.

[8]  R. Cheng,et al.  Magnon thermal Edelstein effect detected by inverse spin Hall effect , 2020 .

[9]  L. Heyderman,et al.  Spin-Wave Dynamics and Symmetry Breaking in an Artificial Spin Ice. , 2020, Nano letters.

[10]  Y. Liu,et al.  A nonlocal spin Hall magnetoresistance in a platinum layer deposited on a magnon junction , 2020 .

[11]  T. Ono,et al.  Switchable giant nonreciprocal frequency shift of propagating spin waves in synthetic antiferromagnets , 2020, Science Advances.

[12]  Jianjun Luo,et al.  Modulation of magnonic bands of dipole-exchange spin waves in fishbone-like yttrium iron garnet nanostrip magnonic crystal waveguides , 2020, Journal of Physics D: Applied Physics.

[13]  P. Wei,et al.  Spin current from sub-terahertz-generated antiferromagnetic magnons , 2020, Nature.

[14]  Huaiwu Zhang,et al.  Effect of Interfacial Roughness Spin Scattering on the Spin Current Transport in YIG/NiO/Pt Heterostructures. , 2019, ACS applied materials & interfaces.

[15]  Qi Wang,et al.  Integrated magnonic half-adder , 2019, ArXiv.

[16]  B. Hillebrands,et al.  Magnon–fluxon interaction in a ferromagnet/superconductor heterostructure , 2019, Nature Physics.

[17]  B. V. van Wees,et al.  Efficient Injection and Detection of Out-of-Plane Spins via the Anomalous Spin Hall Effect in Permalloy Nanowires , 2018, Nano letters.

[18]  M. Fiebig,et al.  Antiferromagnetic opto-spintronics , 2017, 1705.10600.

[19]  Jiang Xiao,et al.  Antiferromagnetic domain wall as spin wave polarizer and retarder , 2017, Nature Communications.

[20]  A. Serga,et al.  Magnonic crystals for data processing , 2017, 1702.06701.

[21]  D. Heitmann,et al.  Design and construction of a spin-wave lens , 2016, Scientific Reports.

[22]  J. Prieto,et al.  High-efficiency control of spin-wave propagation in ultra-thin yttrium iron garnet by the spin-orbit torque , 2016 .

[23]  V. Cros,et al.  Approaching soft X-ray wavelengths in nanomagnet-based microwave technology , 2016, Nature Communications.

[24]  A. Serga,et al.  Magnon spintronics , 2015, Nature Physics.

[25]  A. Adeyeye,et al.  Universal dependence of the spin wave band structure on the geometrical characteristics of two-dimensional magnonic crystals , 2015, Scientific Reports.

[26]  R. Duine,et al.  Long-distance transport of magnon spin information in a magnetic insulator at room temperature , 2015, Nature Physics.

[27]  S. Piramanayagam,et al.  Enhancement of spin-wave nonreciprocity in magnonic crystals via synthetic antiferromagnetic coupling , 2015, Scientific Reports.

[28]  R. Qiu,et al.  Magnon band structure and magnon density in one-dimensional magnonic crystals , 2014 .

[29]  A. Serga,et al.  Magnon transistor for all-magnon data processing , 2014, Nature Communications.

[30]  S. Tacchi,et al.  Field-controlled rotation of spin-wave nanochannels in bi-component magnonic crystals , 2014 .

[31]  F. García-Sánchez,et al.  The design and verification of MuMax3 , 2014, 1406.7635.

[32]  J. Pearson,et al.  Realization of a spin-wave multiplexer , 2014, Nature Communications.

[33]  C. Back,et al.  Coupling of spinwave modes in wire structures , 2014 .

[34]  M. Krawczyk,et al.  Review and prospects of magnonic crystals and devices with reprogrammable band structure , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[35]  S. Nikitov,et al.  Standing spin waves in magnonic crystals , 2013 .

[36]  V. Kruglyak,et al.  Resonant microwave-to-spin-wave transducer , 2012 .

[37]  A. Adeyeye,et al.  Interfacial magnetization dynamics of a bi-component magnonic crystal comprising contacting ferromagnetic nanostripes , 2012 .

[38]  Dheeraj Kumar,et al.  Numerical calculation of spin wave dispersions in magnetic nanostructures , 2012 .

[39]  A. Adeyeye,et al.  Ferromagnetic and antiferromagnetic spin-wave dispersions in a dipole-exchange coupled bi-component magnonic crystal , 2011 .

[40]  S. Piramanayagam,et al.  Micromagnetic study of spin wave propagation in bicomponent magnonic crystal waveguides , 2011 .

[41]  H. Ulrichs,et al.  The building blocks of magnonics , 2011, 1101.0479.

[42]  A. Adeyeye,et al.  Nanostructured magnonic crystals with size-tunable bandgaps. , 2010, ACS nano.

[43]  Sang-Koog Kim,et al.  A gigahertz-range spin-wave filter composed of width-modulated nanostrip magnonic-crystal waveguides , 2009 .

[44]  A. Adeyeye,et al.  Observation of frequency band gaps in a one-dimensional nanostructured magnonic crystal , 2009 .

[45]  M. Kostylev,et al.  Realization of spin-wave logic gates , 2007, 0711.4720.

[46]  M. Kostylev,et al.  Collective spin modes in monodimensional magnonic crystals consisting of dipolarly coupled nanowires , 2007 .