Pulsating fronts and front-like entire solutions for a reaction–advection–diffusion competition model in a periodic habitat

[1]  Wan-Tong Li,et al.  Propagation phenomena for a bistable Lotka–Volterra competition system with advection in a periodic habitat , 2018, Zeitschrift für angewandte Mathematik und Physik.

[2]  Y. Lou,et al.  Global dynamics of a Lotka–Volterra competition–diffusion–advection system in heterogeneous environments , 2019, Journal de Mathématiques Pures et Appliquées.

[3]  Dongmei Xiao,et al.  Global dynamics of a classical Lotka–Volterra competition–diffusion–advection system , 2018, Journal of Functional Analysis.

[4]  Asymptotic behavior of traveling fronts and entire solutions for a periodic bistable competition–diffusion system , 2018, Journal of Differential Equations.

[5]  Xiao-Qiang Zhao,et al.  Evolution of passive movement in advective environments: General boundary condition , 2018 .

[6]  Invasion entire solutions in a time periodic Lotka-Volterra competition system with diffusion. , 2017, Mathematical biosciences and engineering : MBE.

[7]  Y. Lou,et al.  The Role of Advection in a Two-species Competition Model: A Bifurcation Approach , 2017 .

[8]  W. Ni,et al.  Global dynamics of the Lotka–Volterra competition–diffusion system with equal amount of total resources, III , 2017 .

[9]  Peng Zhou On a Lotka-Volterra competition system: diffusion vs advection , 2016 .

[10]  Arnaud Ducrot,et al.  A multi-dimensional bistable nonlinear diffusion equation in a periodic medium , 2016 .

[11]  Wan-Tong Li,et al.  Entire solutions of nonlocal dispersal equations with monostable nonlinearity in space periodic habitats , 2016 .

[12]  Xiao-Qiang Zhao,et al.  On a Lotka–Volterra competition model: the effects of advection and spatial variation , 2016 .

[13]  Wenxian Shen,et al.  Traveling wave solutions of Lotka–Volterra competition systems with nonlocal dispersal in periodic habitats , 2016 .

[14]  Competition in periodic media: I -- Existence of pulsating fronts , 2016, 1606.02367.

[15]  Wei-Ming Ni,et al.  Global Dynamics of the Lotka‐Volterra Competition‐Diffusion System: Diffusion and Spatial Heterogeneity I , 2016 .

[16]  Wei-Ming Ni,et al.  Global dynamics of the Lotka–Volterra competition–diffusion system with equal amount of total resources, II , 2016 .

[17]  Shi-Liang Wu,et al.  Existence of entire solutions for delayed monostable epidemic models , 2015 .

[18]  Xiao-Qiang Zhao,et al.  Traveling waves and spreading speeds for time-space periodic monotone systems , 2015, 1504.03788.

[19]  Andrej Zlatoš Existence and non-existence of transition fronts for bistable and ignition reactions , 2015, 1503.07599.

[20]  Wan-Tong Li,et al.  INVASION ENTIRE SOLUTIONS IN A COMPETITION SYSTEM WITH NONLOCAL DISPERSAL , 2014 .

[21]  Xiao-Qiang Zhao,et al.  Propagation Phenomena for A Reaction–Advection–Diffusion Competition Model in A Periodic Habitat , 2014, 1410.4591.

[22]  Wenxian Shen,et al.  Spreading Speeds and Linear Determinacy for Two Species Competition Systems with Nonlocal Dispersal in Periodic Habitats , 2014, 1410.0317.

[23]  Shigui Ruan,et al.  Time periodic traveling wave solutions for periodic advection–reaction–diffusion systems , 2014 .

[24]  F. Hamel,et al.  Bistable pulsating fronts for reaction-diffusion equations in a periodic habitat , 2014, 1408.0723.

[25]  Shi-Liang Wu,et al.  Entire solutions in periodic lattice dynamical systems , 2013 .

[26]  Zhi-Cheng Wang,et al.  Existence and stability of time periodic traveling waves for a periodic bistable Lotka–Volterra competition system , 2013 .

[27]  Xiao-Qiang Zhao,et al.  Bistable travelling waves for a reaction and diffusion model with seasonal succession , 2013 .

[28]  King-Yeung Lam,et al.  Uniqueness and Complete Dynamics in Heterogeneous Competition-Diffusion Systems , 2012, SIAM J. Appl. Math..

[29]  Xinfu Chen,et al.  Effects of diffusion and advection on the smallest eigenvalue of an elliptic operator and their applications , 2012 .

[30]  Shigui Ruan,et al.  Existence, Uniqueness and Asymptotic Stability of Time Periodic Traveling Waves for a Periodic Lotka-Volterra Competition System with Diffusion. , 2011, Journal de mathematiques pures et appliquees.

[31]  Xiao-Qiang Zhao,et al.  Bistable Traveling Waves for Monotone Semiflows with Applications , 2011, 1102.4556.

[32]  Xiao-Qiang Zhao,et al.  Spreading speeds and traveling waves for abstract monostable evolution systems , 2010 .

[33]  Guangying Lv,et al.  Entire solutions of a diffusive and competitive Lotka–Volterra type system with nonlocal delays , 2010 .

[34]  Chang-Hong Wu,et al.  Entire solutions for a two-component competition system in a lattice , 2010 .

[35]  R. Hambrock,et al.  The Evolution of Conditional Dispersal Strategies in Spatially Heterogeneous Habitats , 2009, Bulletin of mathematical biology.

[36]  Koichi Tachibana,et al.  An Entire Solution to the Lotka-Volterra Competition-Diffusion Equations , 2009, SIAM J. Math. Anal..

[37]  Wan-Tong Li,et al.  Entire solutions in bistable reaction-diffusion equations with nonlocal delayed nonlinearity , 2008 .

[38]  Wan-Tong Li,et al.  Entire solutions in monostable reaction-diffusion equations with delayed nonlinearity , 2008 .

[39]  François Hamel,et al.  Qualitative properties of monostable pulsating fronts: exponential decay and monotonicity , 2008 .

[40]  Xinfu Chen,et al.  Evolution of conditional dispersal: a reaction–diffusion–advection model , 2008, Journal of mathematical biology.

[41]  Hirokazu Ninomiya,et al.  Entire Solutions with Merging Fronts to Reaction–Diffusion Equations , 2006 .

[42]  Yuan Lou,et al.  On the effects of migration and spatial heterogeneity on single and multiple species , 2006 .

[43]  Henri Berestycki,et al.  Analysis of the periodically fragmented environment model: II—biological invasions and pulsating travelling fronts , 2005 .

[44]  Henri Berestycki,et al.  Analysis of the periodically fragmented environment model : I – Species persistence , 2005, Journal of mathematical biology.

[45]  Xinfu Chen,et al.  Existence and uniqueness of entire solutions for a reaction-diffusion equation , 2005 .

[46]  Jong-Shenq Guo,et al.  Entire solutions of reaction-diffusion equations and an application to discrete diffusive equations , 2004 .

[47]  Xiao-Qiang Zhao,et al.  Dynamical systems in population biology , 2003 .

[48]  Henri Berestycki,et al.  Front propagation in periodic excitable media , 2002 .

[49]  François Hamel,et al.  Travelling Fronts and Entire Solutions¶of the Fisher-KPP Equation in ℝN , 2001 .

[50]  François Hamel,et al.  Entire solutions of the KPP equation , 1999 .

[51]  Konstantin Mischaikow,et al.  The evolution of slow dispersal rates: a reaction diffusion model , 1998 .

[52]  Jack Xin,et al.  Existence and nonexistence of traveling waves and reaction-diffusion front propagation in periodic media , 1993 .

[53]  Jack Xin,et al.  Existence of planar flame fronts in convective-diffusive periodic media , 1992 .

[54]  X. Xin,et al.  Existence and stability of traveling waves in periodic media governed by a bistable nonlinearity , 1991 .

[55]  X. Xin,et al.  Existence and uniqueness of travelling waves in a reaction−diffusion equation with combustion nonlinearity , 1991 .