Maximizing CRISPR/Cas9 phenotype penetrance applying predictive modeling of editing outcomes in Xenopus and zebrafish embryos

[1]  J. Zuber,et al.  Multilayered VBC score predicts sgRNAs that efficiently generate loss-of-function alleles , 2020, Nature Methods.

[2]  Kutubuddin A Molla,et al.  Predicting CRISPR/Cas9-Induced Mutations for Precise Genome Editing. , 2020, Trends in biotechnology.

[3]  T. Haaf,et al.  Homozygous Null TBX4 Mutations Lead to Posterior Amelia with Pelvic and Pulmonary Hypoplasia. , 2019, American journal of human genetics.

[4]  Ashley M. Jacobi,et al.  Highly Efficient CRISPR-Cas9-Based Methods for Generating Deletion Mutations and F0 Embryos that Lack Gene Function in Zebrafish. , 2019, Developmental cell.

[5]  Xiaobing Shi,et al.  De novo identification of essential protein domains from CRISPR-Cas9 tiling-sgRNA knockout screens , 2019, Nature Communications.

[6]  Ben Lehner,et al.  The impact of nonsense-mediated mRNA decay on genetic disease, gene editing and cancer immunotherapy , 2019, Nature Genetics.

[7]  Nicholas A. Rossi,et al.  Inference of CRISPR Edits from Sanger Trace Data , 2019, bioRxiv.

[8]  Carla M. Mann,et al.  The Gene Sculpt Suite: a set of tools for genome editing , 2019, Nucleic Acids Res..

[9]  M. Horb,et al.  Xenopus Resources: Transgenic, Inbred and Mutant Animals, Training Opportunities, and Web-Based Support , 2019, Front. Physiol..

[10]  M. van de Rijn,et al.  CRISPR-NSID: an in vivo CRISPR/Cas9 negative selection screen reveals EZH2 as a druggable dependency factor in a genetic desmoid tumor model , 2019, bioRxiv.

[11]  Xiaobing Shi,et al.  De novo identification of essential protein domains from CRISPR-Cas9 tiling-sgRNA knockout screens , 2019, Nature Communications.

[12]  Troy J. Pells,et al.  Xenbase: Facilitating the Use of Xenopus to Model Human Disease , 2019, Front. Physiol..

[13]  P. Van Vlierberghe,et al.  Xenopus tropicalis: Joining the Armada in the Fight Against Blood Cancer , 2019, Front. Physiol..

[14]  Djork-Arné Clevert,et al.  PAVOOC: designing CRISPR sgRNAs using 3D protein structures and functional domain annotations , 2018, bioRxiv.

[15]  William Stafford Noble,et al.  Massively parallel profiling and predictive modeling of the outcomes of CRISPR/Cas9-mediated double-strand break repair , 2018, bioRxiv.

[16]  Andrew R. Bassett,et al.  Predicting the mutations generated by repair of Cas9-induced double-strand breaks , 2018, Nature Biotechnology.

[17]  David K. Gifford,et al.  Predictable and precise template-free CRISPR editing of pathogenic variants , 2018, Nature.

[18]  Carla M. Mann,et al.  Robust activation of microhomology-mediated end joining for precision gene editing applications , 2018, PLoS genetics.

[19]  T. Naert,et al.  CRISPR/Cas9 disease models in zebrafish and Xenopus: The genetic renaissance of fish and frogs. , 2018, Drug discovery today. Technologies.

[20]  Maryam Clausen,et al.  Decoding non-random mutational signatures at Cas9 targeted sites , 2018, Nucleic acids research.

[21]  Rahul C. Deo,et al.  A Rapid Method for Directed Gene Knockout for Screening in G0 Zebrafish. , 2018, Developmental cell.

[22]  H. Kayserili,et al.  RSPO2 inhibition of RNF43 and ZNRF3 governs limb development independently of LGR4/5/6 , 2018, Nature.

[23]  James C. Smith,et al.  Innate Immune Response and Off-Target Mis-splicing Are Common Morpholino-Induced Side Effects in Xenopus , 2018, Developmental cell.

[24]  Wouter Steyaert,et al.  BATCH-GE: Analysis of NGS Data for Genome Editing Assessment. , 2018, Methods in molecular biology.

[25]  T. Naert,et al.  Methods for CRISPR/Cas9 Xenopus tropicalis Tissue-Specific Multiplex Genome Engineering. , 2018, Methods in molecular biology.

[26]  M. Horb,et al.  Tissue-Specific Gene Inactivation in Xenopus laevis: Knockout of lhx1 in the Kidney with CRISPR/Cas9 , 2017, Genetics.

[27]  Deniz M. Ozata,et al.  CRISPR/Cas9-mediated genome editing induces exon skipping by alternative splicing or exon deletion , 2017, Genome Biology.

[28]  Adam Lavertu,et al.  Frameshift indels introduced by genome editing can lead to in-frame exon skipping , 2017, PloS one.

[29]  M. Getwan,et al.  Toolbox in a tadpole: Xenopus for kidney research , 2017, Cell and Tissue Research.

[30]  T. Naert,et al.  TALENs and CRISPR/Cas9 fuel genetically engineered clinically relevant Xenopus tropicalis tumor models , 2017, Genesis.

[31]  D. Deforce,et al.  CRISPR/Cas9 mediated knockout of rb1 and rbl1 leads to rapid and penetrant retinoblastoma development in Xenopus tropicalis , 2016, Scientific Reports.

[32]  A. May,et al.  DNA Repair Profiling Reveals Nonrandom Outcomes at Cas9-Mediated Breaks. , 2016, Molecular cell.

[33]  B. Menten,et al.  BATCH-GE: Batch analysis of Next-Generation Sequencing data for genome editing assessment , 2016, Scientific Reports.

[34]  Charles E. Vejnar,et al.  CRISPRscan: designing highly efficient sgRNAs for CRISPR/Cas9 targeting in vivo , 2015, Nature Methods.

[35]  Marcus Krüger,et al.  Genetic compensation induced by deleterious mutations but not gene knockdowns , 2015, Nature.

[36]  J. Kinney,et al.  Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains , 2015, Nature Biotechnology.

[37]  C. Betsholtz,et al.  Reverse genetic screening reveals poor correlation between morpholino-induced and mutant phenotypes in zebrafish. , 2015, Developmental cell.

[38]  Hidemasa Bono,et al.  CRISPRdirect: software for designing CRISPR/Cas guide RNA with reduced off-target sites , 2014, Bioinform..

[39]  Xiaohui Xie,et al.  Biallelic genome modification in F0 Xenopus tropicalis embryos using the CRISPR/Cas system , 2013, Genesis.

[40]  Marilyn Fisher,et al.  Simple and efficient CRISPR/Cas9‐mediated targeted mutagenesis in Xenopus tropicalis , 2013, Genesis.

[41]  Jeffry D. Sander,et al.  Efficient In Vivo Genome Editing Using RNA-Guided Nucleases , 2013, Nature Biotechnology.

[42]  Jeffry D. Sander,et al.  Efficient In Vivo Genome Editing Using RNA-Guided Nucleases , 2013, Nature Biotechnology.