Evidence of intermittent cascades from discrete hierarchical dissipation in turbulence

[1]  D. Sornette,et al.  Statistical Significance of Periodicity and Log-Periodicity with Heavy-Tailed Correlated Noise , 2001, cond-mat/0110445.

[2]  J. Peinke,et al.  Universality of small scale turbulence. , 2001, Physical review letters.

[3]  J. Delour,et al.  Intermittency of 1D velocity spatial profiles in turbulence: a magnitude cumulant analysis , 2001 .

[4]  D. Sornette,et al.  Significance of log-periodic precursors to financial crashes , 2001, cond-mat/0106520.

[5]  J. Feigenbaum,et al.  A Bayesian analysis of log-periodic precursors to financial crashes , 2001 .

[6]  James A. Feigenbaum,et al.  A statistical analysis of log-periodic precursors to financial crashes* , 2001, cond-mat/0101031.

[7]  D. Sornette Critical Phenomena in Natural Sciences: Chaos, Fractals, Selforganization and Disorder: Concepts and Tools , 2000 .

[8]  D. Sornette,et al.  Reexamination of log periodicity observed in the seismic precursors of the 1989 Loma Prieta earthquake , 2000, physics/0007095.

[9]  E. Bacry,et al.  Multifractal random walk. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  D. Sornette,et al.  The Nasdaq crash of April 2000: Yet another example of log-periodicity in a speculative bubble ending in a crash , 2000, cond-mat/0004263.

[11]  D. Sornette,et al.  Critical ruptures , 2000, cond-mat/0003478.

[12]  D. Sornette,et al.  New evidence of earthquake precursory phenomena in the 17 January 1995 Kobe earthquake, Japan , 1999, cond-mat/9911444.

[13]  D. Sornette,et al.  Artifactual log‐periodicity in finite size data: Relevance for earthquake aftershocks , 1999, cond-mat/9911421.

[14]  D. Sornette,et al.  Predicting Financial Crashes Using Discrete Scale Invariance , 1999, cond-mat/9903321.

[15]  Didier Sornette,et al.  Punctuated vortex coalescence and discrete scale invariance in two-dimensional turbulence , 1999, cond-mat/9902247.

[16]  Damien Vandembroucq,et al.  Improved shell model of turbulence , 1998, chao-dyn/9803025.

[17]  D. Sornette,et al.  Evidence of Discrete Scale Invariance in DLA and Time-to-Failure by Canonical Averaging , 1998, cond-mat/9803191.

[18]  D. Sornette Discrete Scale Invariance in Turbulence , 1998, cond-mat/9802121.

[19]  E. Domany,et al.  Self-averaging, distribution of pseudocritical temperatures, and finite size scaling in critical disordered systems , 1998, cond-mat/9802102.

[20]  D. Sornette,et al.  Log-periodic oscillations for biased diffusion on random lattice , 1997, cond-mat/9712085.

[21]  D. Sornette Discrete scale invariance and complex dimensions , 1997, cond-mat/9707012.

[22]  D. Sornette,et al.  SPONTANEOUS GENERATION OF DISCRETE SCALE INVARIANCE IN GROWTH MODELS , 1997 .

[23]  Jean-Pierre Eckmann,et al.  Q-ANALYSIS OF FRACTAL SETS , 1997 .

[24]  R. Scalettar,et al.  Revisiting the Theory of Finite Size Scaling in Disordered Systems , 1997, cond-mat/9704155.

[25]  B. Dubrulle Anomalous scaling and generic structure function in turbulence , 1996, 1106.1225.

[26]  D. Sornette,et al.  Discrete Scaling in Earthquake Precursory Phenomena: Evidence in the Kobe Earthquake, Japan , 1996 .

[27]  Didier Sornette,et al.  Discrete scale invariance, complex fractal dimensions, and log‐periodic fluctuations in seismicity , 1996 .

[28]  M. Brachet,et al.  Multifractal scaling of probability density function : a tool for turbulent data analysis , 1996 .

[29]  Didier Sornette,et al.  Complex Exponents and Log-Periodic Corrections in Frustrated Systems , 1996 .

[30]  U. Frisch Turbulence: The Legacy of A. N. Kolmogorov , 1996 .

[31]  J. Muzy,et al.  Complex fractal dimensions describe the hierarchical structure of diffusion-limited-aggregate clusters. , 1996, Physical review letters.

[32]  D. Sornette,et al.  Stock Market Crashes, Precursors and Replicas , 1995, cond-mat/9510036.

[33]  N. Goldenfeld,et al.  Does fully developed turbulence exist? Reynolds number independence versus asymptotic covariance , 1995, cond-mat/9507132.

[34]  Didier Sornette,et al.  Universal Log-Periodic Correction to Renormalization Group Scaling for Rupture Stress Prediction From Acoustic Emissions , 1995 .

[35]  Didier Sornette,et al.  Complex Critical Exponents from Renormalization Group Theory of Earthquakes: Implications for Earthquake Predictions , 1995 .

[36]  She,et al.  Quantized energy cascade and log-Poisson statistics in fully developed turbulence. , 1995, Physical review letters.

[37]  Dubrulle,et al.  Intermittency in fully developed turbulence: Log-Poisson statistics and generalized scale covariance. , 1994, Physical review letters.

[38]  She,et al.  Universal scaling laws in fully developed turbulence. , 1994, Physical review letters.

[39]  Succi,et al.  Extended self-similarity in turbulent flows. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[40]  Sreenivasan,et al.  Scale-invariant multiplier distributions in turbulence. , 1992, Physical review letters.

[41]  C. Meneveau,et al.  The multifractal nature of turbulent energy dissipation , 1991, Journal of Fluid Mechanics.

[42]  Sreenivasan,et al.  Negative dimensions: Theory, computation, and experiment. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[43]  E. Novikov The effects of intermittency on statistical characteristics of turbulence and scale similarity of breakdown coefficients , 1990 .

[44]  Jensen,et al.  Fractal measures and their singularities: The characterization of strange sets. , 1987, Physical review. A, General physics.

[45]  C. Meneveau,et al.  Simple multifractal cascade model for fully developed turbulence. , 1987, Physical review letters.

[46]  K. Binder,et al.  Spin glasses: Experimental facts, theoretical concepts, and open questions , 1986 .

[47]  Leonard A. Smith,et al.  Lacunarity and intermittency in fluid turbulence , 1986 .

[48]  S. Baliunas,et al.  A Prescription for period analysis of unevenly sampled time series , 1986 .

[49]  Jensen,et al.  Erratum: Fractal measures and their singularities: The characterization of strange sets , 1986, Physical review. A, General physics.

[50]  F. Anselmet,et al.  High-order velocity structure functions in turbulent shear flows , 1984, Journal of Fluid Mechanics.

[51]  J. Scargle Studies in astronomical time series analysis. II - Statistical aspects of spectral analysis of unevenly spaced data , 1982 .

[52]  Uriel Frisch,et al.  A simple dynamical model of intermittent fully developed turbulence , 1978, Journal of Fluid Mechanics.

[53]  A. Kolmogorov A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number , 1962, Journal of Fluid Mechanics.

[54]  Robert H. Kraichnan,et al.  The structure of isotropic turbulence at very high Reynolds numbers , 1959, Journal of Fluid Mechanics.

[55]  Lewis F. Richardson,et al.  Weather Prediction by Numerical Process , 1922 .

[56]  Rama Cont,et al.  Scale Invariance and Beyond , 1997 .

[57]  B. Castaing,et al.  Turbulence: Statistical Approach , 1997 .

[58]  Didier Sornette,et al.  Scale Invariance and Beyond , 1997 .

[59]  W. Press,et al.  Numerical Recipes in Fortran: The Art of Scientific Computing.@@@Numerical Recipes in C: The Art of Scientific Computing. , 1994 .

[60]  Bonn,et al.  From small scales to large scales in three-dimensional turbulence: The effect of diluted polymers. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[61]  William H. Press,et al.  Book-Review - Numerical Recipes in Pascal - the Art of Scientific Computing , 1989 .

[62]  Y. Gagné Etude expérimentale de l'intermittence et des singularités dans le plan complexe en turbulence développée , 1987 .

[63]  The Legacy , 2022, Frank Lloyd Wright's Forgotten House.