Fast numerical solution for fractional diffusion equations by exponential quadrature rule
暂无分享,去创建一个
[1] Weihua Deng,et al. Finite Element Method for the Space and Time Fractional Fokker-Planck Equation , 2008, SIAM J. Numer. Anal..
[2] Hai-Wei Sun,et al. Fast Exponential Time Integration for Pricing Options in Stochastic Volatility Jump Diffusion Models , 2014 .
[3] Hai-Wei Sun,et al. Shift‐invert Lanczos method for the symmetric positive semidefinite Toeplitz matrix exponential , 2011, Numer. Linear Algebra Appl..
[4] Siu-Long Lei,et al. A circulant preconditioner for fractional diffusion equations , 2013, J. Comput. Phys..
[5] Weihua Deng,et al. Fourth Order Difference Approximations for Space Riemann-Liouville Derivatives Based on Weighted and Shifted Lubich Difference Operators , 2014 .
[6] D. Benson,et al. The fractional‐order governing equation of Lévy Motion , 2000 .
[7] Hai-Wei Sun,et al. Multigrid method for fractional diffusion equations , 2012, J. Comput. Phys..
[8] Mihály Kovács,et al. Numerical solutions for fractional reaction-diffusion equations , 2008, Comput. Math. Appl..
[9] Xiao-Qing Jin,et al. Developments and Applications of Block Toeplitz Iterative Solvers , 2003 .
[10] Jian Bai,et al. Fractional-Order Anisotropic Diffusion for Image Denoising , 2007, IEEE Transactions on Image Processing.
[11] Charles R. Johnson,et al. Topics in Matrix Analysis , 1991 .
[12] I. Moret,et al. RD-Rational Approximations of the Matrix Exponential , 2004 .
[13] I. Podlubny. Fractional differential equations , 1998 .
[14] Enrico Scalas,et al. Waiting-times and returns in high-frequency financial data: an empirical study , 2002, cond-mat/0203596.
[15] Chuanju Xu,et al. Finite difference/spectral approximations for the time-fractional diffusion equation , 2007, J. Comput. Phys..
[16] Raymond H. Chan,et al. An Introduction to Iterative Toeplitz Solvers (Fundamentals of Algorithms) , 2007 .
[17] Raymond H. Chan,et al. Conjugate Gradient Methods for Toeplitz Systems , 1996, SIAM Rev..
[18] R. Chan,et al. An Introduction to Iterative Toeplitz Solvers , 2007 .
[19] Mark M. Meerschaert,et al. A second-order accurate numerical approximation for the fractional diffusion equation , 2006, J. Comput. Phys..
[20] Mechthild Thalhammer,et al. A second-order Magnus-type integrator for quasi-linear parabolic problems , 2007, Math. Comput..
[21] Marlis Hochbruck,et al. Explicit Exponential Runge-Kutta Methods for Semilinear Parabolic Problems , 2005, SIAM J. Numer. Anal..
[22] Hong Wang,et al. A direct O(N log2 N) finite difference method for fractional diffusion equations , 2010, J. Comput. Phys..
[23] Weihua Deng,et al. Second-order LOD multigrid method for multidimensional Riesz fractional diffusion equation , 2013, BIT Numerical Mathematics.
[24] Hai-Wei Sun,et al. Shift-Invert Arnoldi Approximation to the Toeplitz Matrix Exponential , 2010, SIAM J. Sci. Comput..
[25] Hong Wang,et al. A fast Galerkin method with efficient matrix assembly and storage for a peridynamic model , 2012, J. Comput. Phys..
[26] Norbert Heuer,et al. Numerical Approximation of a Time Dependent, Nonlinear, Space-Fractional Diffusion Equation , 2007, SIAM J. Numer. Anal..
[27] Mingrong Cui,et al. Compact finite difference method for the fractional diffusion equation , 2009, J. Comput. Phys..
[28] Alexander Ostermann,et al. A second-order Magnus-type integrator for nonautonomous parabolic problems , 2006 .
[29] Hong Wang,et al. Fast finite difference methods for space-fractional diffusion equations with fractional derivative boundary conditions , 2015, J. Comput. Phys..
[30] Vickie E. Lynch,et al. Anomalous diffusion and exit time distribution of particle tracers in plasma turbulence model , 2001 .
[31] D. Benson,et al. Application of a fractional advection‐dispersion equation , 2000 .
[32] Charles Tadjeran,et al. Finite di$erence approximations for fractional advection-dispersion &ow equations , 2004 .
[33] Han Zhou,et al. Quasi-Compact Finite Difference Schemes for Space Fractional Diffusion Equations , 2012, J. Sci. Comput..
[34] Siu-Long Lei,et al. Circulant and skew-circulant splitting iteration for fractional advection–diffusion equations , 2014, Int. J. Comput. Math..
[35] J. Cavendish. On the Norm of a Matrix Exponential , 1974 .
[36] Hong Wang,et al. A Fast Finite Difference Method for Two-Dimensional Space-Fractional Diffusion Equations , 2012, SIAM J. Sci. Comput..
[37] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[38] Bruce J. West,et al. Lévy dynamics of enhanced diffusion: Application to turbulence. , 1987, Physical review letters.
[39] Zhaoxia Yang,et al. Finite difference approximations for the fractional advection-diffusion equation , 2009 .
[40] Hong Wang,et al. AN EFFICIENT COLLOCATION METHOD FOR A NON-LOCAL DIFFUSION MODEL , 2013 .
[41] Xiao-Qing Jin,et al. Preconditioned iterative methods for fractional diffusion equation , 2014, J. Comput. Phys..
[42] Hong Wang,et al. A fast and faithful collocation method with efficient matrix assembly for a two-dimensional nonlocal diffusion model , 2014 .
[43] George F. Simmons. The Existence and Uniqueness of Solutions , 2016 .
[44] Ercília Sousa,et al. Finite difference approximations for a fractional advection diffusion problem , 2009, J. Comput. Phys..
[45] Michael K. Ng,et al. Preconditioning Techniques for Diagonal-times-Toeplitz Matrices in Fractional Diffusion Equations , 2014, SIAM J. Sci. Comput..
[46] M. Meerschaert,et al. Finite difference methods for two-dimensional fractional dispersion equation , 2006 .
[47] Weihua Deng,et al. EFFICIENT NUMERICAL ALGORITHMS FOR THREE-DIMENSIONAL FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS , 2014 .
[48] M. Meerschaert,et al. Finite difference approximations for two-sided space-fractional partial differential equations , 2006 .
[49] Hong Wang,et al. A fast finite difference method for three-dimensional time-dependent space-fractional diffusion equations and its efficient implementation , 2013, J. Comput. Phys..
[50] Stevens,et al. Self-similar transport in incomplete chaos. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[51] Brian Clark,et al. Physics in Oil Exploration , 2002 .
[52] David L. Powers. On the Norm of a Matrix Exponential (J. C. Cavendish) , 1975 .
[53] Han Zhou,et al. A class of second order difference approximations for solving space fractional diffusion equations , 2012, Math. Comput..
[54] Xin Liu,et al. Fast exponential time integration scheme for option pricing with jumps , 2012, Numer. Linear Algebra Appl..