Coupled-cluster techniques for computational chemistry: The CFOUR program package.

An up-to-date overview of the CFOUR program system is given. After providing a brief outline of the evolution of the program since its inception in 1989, a comprehensive presentation is given of its well-known capabilities for high-level coupled-cluster theory and its application to molecular properties. Subsequent to this generally well-known background information, much of the remaining content focuses on lesser-known capabilities of CFOUR, most of which have become available to the public only recently or will become available in the near future. Each of these new features is illustrated by a representative example, with additional discussion targeted to educating users as to classes of applications that are now enabled by these capabilities. Finally, some speculation about future directions is given, and the mode of distribution and support for CFOUR are outlined.

[1]  Zoltán Rolik,et al.  The MRCC program system: Accurate quantum chemistry from water to proteins. , 2020, The Journal of chemical physics.

[2]  D. Matthews Improved Grid Optimization and Fitting in Least Squares Tensor Hypercontraction. , 2019, Journal of chemical theory and computation.

[3]  Róbert Izsák Single‐reference coupled cluster methods for computing excitation energies in large molecules: The efficiency and accuracy of approximations , 2020, WIREs Computational Molecular Science.

[4]  Joonho Lee,et al.  Systematically Improvable Tensor Hypercontraction: Interpolative Separable Density-Fitting for Molecules Applied to Exact Exchange, Second- and Third-Order Møller-Plesset Perturbation Theory. , 2019, Journal of chemical theory and computation.

[5]  David W. Small,et al.  Excited states via coupled cluster theory without equation-of-motion methods: Seeking higher roots with application to doubly excited states and double core hole states. , 2019, The Journal of chemical physics.

[6]  Lan Cheng A study of non-iterative triples contributions in relativistic equation-of-motion coupled-cluster calculations using an exact two-component Hamiltonian with atomic mean-field spin-orbit integrals: Application to uranyl and other heavy-element compounds. , 2019, The Journal of chemical physics.

[7]  Lan Cheng,et al.  On the Performance of Delta-Coupled-Cluster Methods for Calculations of Core-Ionization Energies of First-Row Elements. , 2019, Journal of chemical theory and computation.

[8]  Jacek Koput,et al.  Ab initio structure and vibration‐rotation dynamics of germylene, GeH2 , 2019, J. Comput. Chem..

[9]  J. Gauss,et al.  Implementation of analytic gradients for CCSD and EOM-CCSD using Cholesky decomposition of the electron-repulsion integrals and their derivatives: Theory and benchmarks. , 2019, The Journal of chemical physics.

[10]  S. Stopkowicz,et al.  Transition-Dipole Moments for Electronic Excitations in Strong Magnetic Fields Using Equation-of-Motion and Linear Response Coupled-Cluster Theory. , 2019, Journal of chemical theory and computation.

[11]  J. Gauss,et al.  Analytic evaluation of first-order properties within the mean-field variant of spin-free exact two-component theory. , 2019, The Journal of chemical physics.

[12]  Lan Cheng,et al.  Exact two-component equation-of-motion coupled-cluster singles and doubles method using atomic mean-field spin-orbit integrals. , 2019, The Journal of chemical physics.

[13]  D. Matthews,et al.  Benchmark Calculations of K-Edge Ionization Energies for First-Row Elements Using Scalar-Relativistic Core-Valence-Separated Equation-of-Motion Coupled-Cluster Methods. , 2019, Journal of chemical theory and computation.

[14]  Henrik Koch,et al.  An efficient algorithm for Cholesky decomposition of electron repulsion integrals. , 2018, The Journal of chemical physics.

[15]  Evgeny Epifanovsky,et al.  New and Efficient Equation-of-Motion Coupled-Cluster Framework for Core-Excited and Core-Ionized States. , 2018, Journal of chemical theory and computation.

[16]  W. Thiel,et al.  The rotation-vibration spectrum of methyl fluoride from first principles. , 2018, Physical chemistry chemical physics : PCCP.

[17]  D. Matthews,et al.  Diagrams in coupled-cluster theory: Algebraic derivation of a new diagrammatic method for closed shells , 2019, Mathematical Physics in Theoretical Chemistry.

[18]  D. Matthews On extending and optimising the direct product decomposition , 2018, Molecular Physics.

[19]  J. Gauss,et al.  A one-electron variant of direct perturbation theory for the treatment of scalar-relativistic effects , 2018, Molecular Physics.

[20]  D. Matthews,et al.  Accuracy of Coupled Cluster Excited State Potential Energy Surfaces. , 2018, Journal of chemical theory and computation.

[21]  P. B. Changala,et al.  Fourth-order vibrational perturbation theory with the Watson Hamiltonian: Report of working equations and preliminary results. , 2018, The Journal of chemical physics.

[22]  F. Neese,et al.  Efficient and Accurate Prediction of Nuclear Magnetic Resonance Shielding Tensors with Double-Hybrid Density Functional Theory. , 2018, Journal of chemical theory and computation.

[23]  Andreas Dreuw,et al.  Simulating X-ray Spectroscopies and Calculating Core-Excited States of Molecules. , 2018, Chemical reviews.

[24]  S. Leone,et al.  The ultrafast X-ray spectroscopic revolution in chemical dynamics , 2018, Nature Reviews Chemistry.

[25]  Lan Cheng,et al.  An atomic mean-field spin-orbit approach within exact two-component theory for a non-perturbative treatment of spin-orbit coupling. , 2018, The Journal of chemical physics.

[26]  Justin Z. Gong,et al.  Geometric Energy Derivatives at the Complete Basis Set Limit: Application to the Equilibrium Structure and Molecular Force Field of Formaldehyde. , 2018, Journal of chemical theory and computation.

[27]  J. Gauss,et al.  Perturbative treatment of spin-orbit-coupling within spin-free exact two-component theory using equation-of-motion coupled-cluster methods. , 2018, The Journal of chemical physics.

[28]  A. Krylov,et al.  Calculations of non-adiabatic couplings within equation-of-motion coupled-cluster framework: Theory, implementation, and validation against multi-reference methods. , 2018, The Journal of chemical physics.

[29]  Yue Shen,et al.  Two-component relativistic coupled-cluster methods using mean-field spin-orbit integrals. , 2018, The Journal of chemical physics.

[30]  S. Mukamel,et al.  Roadmap of ultrafast x-ray atomic and molecular physics , 2018 .

[31]  S. Stopkowicz Perspective: Coupled cluster theory for atoms and molecules in strong magnetic fields , 2018 .

[32]  Thomas-C. Jagau Non-iterative triple excitations in equation-of-motion coupled-cluster theory for electron attachment with applications to bound and temporary anions. , 2017, The Journal of chemical physics.

[33]  Devin A. Matthews,et al.  High-Performance Tensor Contraction without Transposition , 2016, SIAM J. Sci. Comput..

[34]  S. Klippenstein,et al.  Ab Initio Computations and Active Thermochemical Tables Hand in Hand: Heats of Formation of Core Combustion Species. , 2017, The journal of physical chemistry. A.

[35]  Mihály Kállay,et al.  Moderate-Cost Ab Initio Thermochemistry with Chemical Accuracy. , 2017, Journal of chemical theory and computation.

[36]  J. Gauss,et al.  Internally Contracted Multireference Coupled Cluster Calculations with a Spin-Free Dirac-Coulomb Hamiltonian: Application to the Monoxides of Titanium, Zirconium, and Hafnium. , 2017, Journal of chemical theory and computation.

[37]  T. Custer,et al.  Structure and Spectroscopy of C2HNO Isomers. , 2017, The journal of physical chemistry. A.

[38]  S. Stopkowicz,et al.  Equation-of-motion coupled-cluster methods for atoms and molecules in strong magnetic fields. , 2017, The Journal of chemical physics.

[39]  P. Szalay,et al.  Accuracy of Coupled Cluster Excitation Energies in Diffuse Basis Sets. , 2017, Journal of chemical theory and computation.

[40]  J. Gauss,et al.  Importance of Triples Contributions to NMR Spin-Spin Coupling Constants Computed at the CC3 and CCSDT Levels. , 2017, Journal of chemical theory and computation.

[41]  D. Matthews,et al.  A new approach to approximate equation-of-motion coupled cluster with triple excitations. , 2016, The Journal of chemical physics.

[42]  A. Nikitin,et al.  First fully ab initio potential energy surface of methane with a spectroscopic accuracy , 2016 .

[43]  J. Tennyson,et al.  Calculation of rotation-vibration energy levels of the ammonia molecule based on an ab initio potential energy surface , 2016 .

[44]  J. Gauss,et al.  Cost-Effective Treatment of Scalar Relativistic Effects for Multireference Systems: A CASSCF Implementation Based on the Spin-free Dirac-Coulomb Hamiltonian. , 2016, Journal of chemical theory and computation.

[45]  A. Karton A computational chemist's guide to accurate thermochemistry for organic molecules , 2016 .

[46]  D. Matthews,et al.  Communication: An accurate calculation of the S1 C2H2 cis-trans isomerization barrier height. , 2016, The Journal of chemical physics.

[47]  Victor Eijkhout,et al.  A Highly-Efficient Implementation of the Doktorov Recurrence Equations for Franck-Condon Calculations. , 2016, Journal of chemical theory and computation.

[48]  J. Olsen,et al.  Molecular response properties in equation of motion coupled cluster theory: A time-dependent perspective. , 2016, The Journal of chemical physics.

[49]  D. Matthews,et al.  Accelerating the convergence of higher-order coupled cluster methods. , 2015, The Journal of chemical physics.

[50]  Sonia Coriani,et al.  Communication: X-ray absorption spectra and core-ionization potentials within a core-valence separated coupled cluster framework. , 2015, The Journal of chemical physics.

[51]  Laura K. McKemmish,et al.  Non-adiabatic effects in thermochemistry, spectroscopy and kinetics: the general importance of all three Born-Oppenheimer breakdown corrections. , 2015, Physical chemistry chemical physics : PCCP.

[52]  J. Gauss,et al.  Spin-orbit couplings within the equation-of-motion coupled-cluster framework: Theory, implementation, and benchmark calculations. , 2015, The Journal of chemical physics.

[53]  Roland Lindh,et al.  Analytical gradients of the state-average complete active space self-consistent field method with density fitting. , 2015, The Journal of chemical physics.

[54]  P. Jørgensen,et al.  Communication: The performance of non-iterative coupled cluster quadruples models. , 2015, The Journal of chemical physics.

[55]  T. Martínez,et al.  Tensor Hypercontraction Second-Order Møller-Plesset Perturbation Theory: Grid Optimization and Reaction Energies. , 2015, Journal of chemical theory and computation.

[56]  J. Gauss,et al.  Coupled-cluster theory for atoms and molecules in strong magnetic fields. , 2015, The Journal of chemical physics.

[57]  P. Botschwina,et al.  High-level theoretical spectroscopic parameters for three ions of astrochemical interest , 2015 .

[58]  John F. Stanton,et al.  Non-orthogonal spin-adaptation of coupled cluster methods: A new implementation of methods including quadruple excitations. , 2015, The Journal of chemical physics.

[59]  Fan Wang,et al.  Equation-of-Motion Coupled-Cluster Theory for Excitation Energies of Closed-Shell Systems with Spin-Orbit Coupling. , 2014, Journal of chemical theory and computation.

[60]  J. Gauss,et al.  Perturbative treatment of spin-orbit coupling within spin-free exact two-component theory. , 2014, The Journal of chemical physics.

[61]  J. Gauss,et al.  Analytic energy derivatives in relativistic quantum chemistry , 2014 .

[62]  P. Szalay,et al.  Benchmarking Coupled Cluster Methods on Valence Singlet Excited States. , 2014, Journal of chemical theory and computation.

[63]  J. Olsen,et al.  Equation-of-motion coupled cluster perturbation theory revisited. , 2014, The Journal of chemical physics.

[64]  P. Pulay Analytical derivatives, forces, force constants, molecular geometries, and related response properties in electronic structure theory , 2014 .

[65]  Jonas Boström,et al.  Analytical Gradients of the Second-Order Moller-Plesset Energy Using Cholesky Decompositions , 2014 .

[66]  P. Jørgensen,et al.  A Lagrangian framework for deriving triples and quadruples corrections to the CCSD energy. , 2014, The Journal of chemical physics.

[67]  Hans Lischka,et al.  Newton‐X: a surface‐hopping program for nonadiabatic molecular dynamics , 2014 .

[68]  J. Gauss,et al.  Spin-free Dirac-Coulomb calculations augmented with a perturbative treatment of spin-orbit effects at the Hartree-Fock level. , 2013, The Journal of chemical physics.

[69]  Evgeny Epifanovsky,et al.  General implementation of the resolution-of-the-identity and Cholesky representations of electron repulsion integrals within coupled-cluster and equation-of-motion methods: theory and benchmarks. , 2013, The Journal of chemical physics.

[70]  Zoltán Rolik,et al.  An efficient linear-scaling CCSD(T) method based on local natural orbitals. , 2013, The Journal of chemical physics.

[71]  Jürgen Gauss,et al.  Revisitation of Nonorthogonal Spin Adaptation in Coupled Cluster Theory. , 2013, Journal of chemical theory and computation.

[72]  Robert M Parrish,et al.  Discrete variable representation in electronic structure theory: quadrature grids for least-squares tensor hypercontraction. , 2013, The Journal of chemical physics.

[73]  J. Gauss,et al.  Quantum-chemical determination of Born–Oppenheimer breakdown parameters for rotational constants: the open-shell species CN, CO+ and BO , 2013 .

[74]  R. Bartlett,et al.  Benchmarking for perturbative triple-excitations in EE-EOM-CC methods. , 2013, The journal of physical chemistry. A.

[75]  Jürgen Gauss,et al.  State‐specific multireference coupled‐cluster theory , 2013 .

[76]  Robert M Parrish,et al.  Tensor hypercontraction. II. Least-squares renormalization. , 2012, The Journal of chemical physics.

[77]  Robert M Parrish,et al.  Communication: Tensor hypercontraction. III. Least-squares tensor hypercontraction for the determination of correlated wavefunctions. , 2012, The Journal of chemical physics.

[78]  Andreas Köhn,et al.  Communication: Restoring full size extensivity in internally contracted multireference coupled cluster theory. , 2012, The Journal of chemical physics.

[79]  M. Schütz,et al.  NMR shielding tensors for density fitted local second-order Møller-Plesset perturbation theory using gauge including atomic orbitals. , 2012, The Journal of chemical physics.

[80]  J. Gauss,et al.  Linear-response theory for Mukherjee's multireference coupled-cluster method: static and dynamic polarizabilities. , 2012, The Journal of chemical physics.

[81]  J. Gauss,et al.  Linear-response theory for Mukherjee's multireference coupled-cluster method: excitation energies. , 2012, The Journal of chemical physics.

[82]  Robert M Parrish,et al.  Tensor hypercontraction density fitting. I. Quartic scaling second- and third-order Møller-Plesset perturbation theory. , 2012, The Journal of chemical physics.

[83]  M. Hoffmann,et al.  A Paramagnetic Bonding Mechanism for Diatomics in Strong Magnetic Fields , 2012, Science.

[84]  J. Stanton,et al.  The ν 3fundamental in NO 3has been seen near 1060 cm -1, albeit some time ago , 2012 .

[85]  J. Gauss,et al.  Ground and excited state geometries via Mukherjee’s multireference coupled-cluster method , 2012 .

[86]  Francesco A. Evangelista,et al.  A sequential transformation approach to the internally contracted multireference coupled cluster method. , 2012, The Journal of chemical physics.

[87]  Andreas Köhn,et al.  Perturbative treatment of triple excitations in internally contracted multireference coupled cluster theory. , 2012, The Journal of chemical physics.

[88]  J. Gauss,et al.  Cyclic SiS2: a new perspective on the Walsh rules. , 2012, Angewandte Chemie.

[89]  Fan Wang,et al.  Equation of motion coupled cluster method for electron attached states with spin-orbit coupling , 2012 .

[90]  J. Gauss,et al.  Communication: spin-orbit splittings in degenerate open-shell states via Mukherjee's multireference coupled-cluster theory: a measure for the coupling contribution. , 2012, The Journal of chemical physics.

[91]  Dmitry I. Lyakh,et al.  Multireference nature of chemistry: the coupled-cluster view. , 2012, Chemical reviews.

[92]  Markus Reiher,et al.  Exact decoupling of the relativistic Fock operator , 2012, Theoretical Chemistry Accounts.

[93]  Xiangyuan Li,et al.  Equation-of-motion coupled-cluster method for ionized states with spin-orbit coupling. , 2012, The Journal of chemical physics.

[94]  J. Gauss,et al.  Analytic second derivatives for the spin-free exact two-component theory. , 2011, The Journal of chemical physics.

[95]  Trond Saue,et al.  Relativistic Hamiltonians for chemistry: a primer. , 2011, Chemphyschem : a European journal of chemical physics and physical chemistry.

[96]  J. Gauss,et al.  Direct perturbation theory in terms of energy derivatives: scalar-relativistic treatment up to sixth order. , 2011, The Journal of chemical physics.

[97]  Lan Cheng,et al.  Analytic energy gradients for the spin-free exact two-component theory using an exact block diagonalization for the one-electron Dirac Hamiltonian. , 2011, The Journal of chemical physics.

[98]  Dieter Cremer,et al.  Møller–Plesset perturbation theory: from small molecule methods to methods for thousands of atoms , 2011 .

[99]  J. Gauss,et al.  Analytical evaluation of first-order electrical properties based on the spin-free Dirac-Coulomb Hamiltonian. , 2011, The Journal of chemical physics.

[100]  Wenli Zou,et al.  Development and application of the analytical energy gradient for the normalized elimination of the small component method. , 2011, The Journal of chemical physics.

[101]  Andreas Köhn,et al.  Pilot applications of internally contracted multireference coupled cluster theory, and how to choose the cluster operator properly. , 2011, The Journal of chemical physics.

[102]  J. Gauss,et al.  Fourth-order relativistic corrections to electrical first-order properties using direct perturbation theory. , 2011, The Journal of chemical physics.

[103]  Francesco A Evangelista,et al.  An orbital-invariant internally contracted multireference coupled cluster approach. , 2011, The Journal of chemical physics.

[104]  V. Tyuterev,et al.  Accurate ab initio determination of the adiabatic potential energy function and the Born-Oppenheimer breakdown corrections for the electronic ground state of LiH isotopologues. , 2011, The Journal of chemical physics.

[105]  J. Gauss,et al.  Direct perturbation theory in terms of energy derivatives: fourth-order relativistic corrections at the Hartree-Fock level. , 2011, The Journal of chemical physics.

[106]  J. Gauss,et al.  Quantitative vibronic coupling calculations: the formyloxyl radical , 2011 .

[107]  J. Gauss,et al.  First-principles calculation of electron spin-rotation tensors. , 2010, The journal of physical chemistry. A.

[108]  Jürgen Gauss,et al.  Parallel Calculation of CCSDT and Mk-MRCCSDT Energies. , 2010, Journal of chemical theory and computation.

[109]  Francesco A. Evangelista,et al.  Insights into the orbital invariance problem in state-specific multireference coupled cluster theory. , 2010, The Journal of chemical physics.

[110]  Wenjian Liu Ideas of relativistic quantum chemistry , 2010 .

[111]  Francesco A. Evangelista,et al.  Analytic gradients for Mukherjee's multireference coupled-cluster method using two-configurational self-consistent-field orbitals. , 2010, The Journal of chemical physics.

[112]  J. Gauss,et al.  Quantum-chemical calculation of spectroscopic parameters for rotational spectroscopy , 2010 .

[113]  Francesco A Evangelista,et al.  Perturbative triples corrections in state-specific multireference coupled cluster theory. , 2010, The Journal of chemical physics.

[114]  Sanghamitra Das,et al.  Full implementation and benchmark studies of Mukherjee's state-specific multireference coupled-cluster ansatz. , 2010, The Journal of chemical physics.

[115]  Mihály Kállay,et al.  Calculation of electronic g-tensors using coupled cluster theory. , 2009, The journal of physical chemistry. A.

[116]  J. Gauss,et al.  Analytic second derivatives in closed-shell coupled-cluster theory with spin-orbit coupling. , 2009, The Journal of chemical physics.

[117]  Lucas Visscher,et al.  The molecular mean-field approach for correlated relativistic calculations. , 2009, The Journal of chemical physics.

[118]  P. Szalay,et al.  Analytic evaluation of the nonadiabatic coupling vector between excited states using equation-of-motion coupled-cluster theory. , 2009, The Journal of chemical physics.

[119]  Anna I Krylov,et al.  Perturbative triples correction for the equation-of-motion coupled-cluster wave functions with single and double substitutions for ionized states: Theory, implementation, and examples. , 2009, The Journal of chemical physics.

[120]  Isaiah Shavitt,et al.  Many-Body Methods in Chemistry and Physics: MBPT and Coupled-Cluster Theory , 2009 .

[121]  Francesco A Evangelista,et al.  Analytic gradients for the state-specific multireference coupled cluster singles and doubles model. , 2009, The Journal of chemical physics.

[122]  Roland Lindh,et al.  Density fitting with auxiliary basis sets from Cholesky decompositions , 2009 .

[123]  Daoling Peng,et al.  Exact two-component Hamiltonians revisited. , 2009, The Journal of chemical physics.

[124]  H. Monkhorst,et al.  Calculation of properties with the coupled-cluster method , 2009 .

[125]  J. Stephen Binkley,et al.  Theoretical models incorporating electron correlation , 2009 .

[126]  J. S. Binkley,et al.  Derivative studies in hartree-fock and møller-plesset theories , 2009 .

[127]  J. Gauss,et al.  Quasidiabatic states described by coupled-cluster theory. , 2009, The Journal of chemical physics.

[128]  Roland Lindh,et al.  Atomic Cholesky decompositions: a route to unbiased auxiliary basis sets for density fitting approximation with tunable accuracy and efficiency. , 2009, The Journal of chemical physics.

[129]  Peter M W Gill,et al.  Self-consistent-field calculations of core excited states. , 2009, The Journal of chemical physics.

[130]  D. Matthews,et al.  Quantitative analysis of Fermi resonances by harmonic derivatives of perturbation theory corrections , 2009 .

[131]  David Feller,et al.  A survey of factors contributing to accurate theoretical predictions of atomization energies and molecular structures. , 2008, The Journal of chemical physics.

[132]  J. Gauss,et al.  Perturbative calculation of spin-orbit splittings using the equation-of-motion ionization-potential coupled-cluster ansatz. , 2008, The Journal of chemical physics.

[133]  Anna I Krylov,et al.  A noniterative perturbative triples correction for the spin-flipping and spin-conserving equation-of-motion coupled-cluster methods with single and double substitutions. , 2008, The Journal of chemical physics.

[134]  J. Gauss,et al.  Analytic energy gradients in closed-shell coupled-cluster theory with spin-orbit coupling. , 2008, The Journal of chemical physics.

[135]  J. Gauss,et al.  Relativistic corrections to electrical first-order properties using direct perturbation theory. , 2008, The Journal of chemical physics.

[136]  T. Helgaker,et al.  Nonperturbative ab initio calculations in strong magnetic fields using London orbitals. , 2008, The Journal of chemical physics.

[137]  Mihály Kállay,et al.  Approximate treatment of higher excitations in coupled-cluster theory. II. Extension to general single-determinant reference functions and improved approaches for the canonical Hartree-Fock case. , 2008, The Journal of chemical physics.

[138]  Henrik Koch,et al.  Method specific Cholesky decomposition: coulomb and exchange energies. , 2008, The Journal of chemical physics.

[139]  D. Matthews,et al.  Gas-phase infrared spectrum of methyl nitrate , 2008 .

[140]  J. Gauss,et al.  Closed-shell coupled-cluster theory with spin-orbit coupling. , 2008, The Journal of chemical physics.

[141]  R J Bartlett,et al.  Parallel implementation of electronic structure energy, gradient, and Hessian calculations. , 2008, The Journal of chemical physics.

[142]  Devin A Matthews,et al.  Calculation of vibrational transition frequencies and intensities in water dimer: comparison of different vibrational approaches. , 2008, The journal of physical chemistry. A.

[143]  Anna I Krylov,et al.  Equation-of-motion coupled-cluster methods for open-shell and electronically excited species: the Hitchhiker's guide to Fock space. , 2008, Annual review of physical chemistry.

[144]  Jürgen Gauss,et al.  Triple excitations in state-specific multireference coupled cluster theory: application of Mk-MRCCSDT and Mk-MRCCSDT-n methods to model systems. , 2008, The Journal of chemical physics.

[145]  Branko Ruscic,et al.  High-accuracy extrapolated ab initio thermochemistry. III. Additional improvements and overview. , 2008, The Journal of chemical physics.

[146]  Jürgen Gauss,et al.  Quantitative prediction of gas-phase 19F nuclear magnetic shielding constants. , 2003, The Journal of chemical physics.

[147]  Jürgen Gauss,et al.  Parallel Calculation of CCSD and CCSD(T) Analytic First and Second Derivatives. , 2008, Journal of chemical theory and computation.

[148]  Francesco Aquilante,et al.  Quartic scaling evaluation of canonical scaled opposite spin second-order Møller Plesset correlation energy using Cholesky decompositions , 2007 .

[149]  Mihály Kállay,et al.  Analytic evaluation of Raman intensities in coupled-cluster theory , 2007 .

[150]  D. Matthews,et al.  Calculated stretching overtone levels and Darling–Dennison resonances in water: a triumph of simple theoretical approaches , 2007 .

[151]  Mihály Kállay,et al.  Calculation of frequency-dependent hyperpolarizabilities using general coupled-cluster models. , 2007, The Journal of chemical physics.

[152]  Roland Lindh,et al.  Unbiased auxiliary basis sets for accurate two-electron integral approximations. , 2007, The Journal of chemical physics.

[153]  Yihan Shao,et al.  Fast evaluation of scaled opposite spin second‐order Møller–Plesset correlation energies using auxiliary basis expansions and exploiting sparsity , 2007, J. Comput. Chem..

[154]  Hans Lischka,et al.  The on-the-fly surface-hopping program system Newton-X: Application to ab initio simulation of the nonadiabatic photodynamics of benchmark systems , 2007 .

[155]  Mihály Kállay,et al.  Gauge-origin independent calculation of magnetizabilities and rotational g tensors at the coupled-cluster level. , 2007, The Journal of chemical physics.

[156]  J. Gauss,et al.  Perturbative treatment of scalar-relativistic effects in coupled-cluster calculations of equilibrium geometries and harmonic vibrational frequencies using analytic second-derivative techniques. , 2007, The Journal of chemical physics.

[157]  Francesco A Evangelista,et al.  Coupling term derivation and general implementation of state-specific multireference coupled cluster theories. , 2007, The Journal of chemical physics.

[158]  J. Gauss,et al.  Perturbative treatment of the electron-correlation contribution to the diagonal Born-Oppenheimer correction. , 2007, The Journal of chemical physics.

[159]  P. Taylor,et al.  Basis set convergence of post-CCSD contributions to molecular atomization energies. , 2007, The Journal of chemical physics.

[160]  Jiří Čížek,et al.  On the Use of the Cluster Expansion and the Technique of Diagrams in Calculations of Correlation Effects in Atoms and Molecules , 2007 .

[161]  Hans-Joachim Werner,et al.  Matrix-formulated direct multiconfiguration self-consistent field and multiconfiguration reference configuration-interaction methods , 2007 .

[162]  R. Shepard The Multiconfiguration Self‐Consistent Field Method , 2007 .

[163]  L. Cederbaum,et al.  Correlation Effects in the Ionization of Molecules: Breakdown of the Molecular Orbital Picture , 2007 .

[164]  R. Bartlett,et al.  Coupled-cluster theory in quantum chemistry , 2007 .

[165]  Trond Saue,et al.  An infinite-order two-component relativistic Hamiltonian by a simple one-step transformation. , 2007, The Journal of chemical physics.

[166]  T. Crawford,et al.  An Introduction to Coupled Cluster Theory for Computational Chemists , 2007 .

[167]  Mihály Kállay,et al.  Analytic calculation of the diagonal Born-Oppenheimer correction within configuration-interaction and coupled-cluster theory. , 2006, The Journal of chemical physics.

[168]  Mihály Kállay,et al.  Calculation of frequency-dependent polarizabilities using general coupled-cluster models , 2006 .

[169]  B. Ruscic,et al.  W4 theory for computational thermochemistry: In pursuit of confident sub-kJ/mol predictions. , 2006, The Journal of chemical physics.

[170]  Juana Vázquez,et al.  High-accuracy extrapolated ab initio thermochemistry. II. Minor improvements to the protocol and a vital simplification. , 2006, The Journal of chemical physics.

[171]  Mihály Kállay,et al.  Basis-set extrapolation techniques for the accurate calculation of molecular equilibrium geometries using coupled-cluster theory. , 2006, The Journal of chemical physics.

[172]  Piotr Piecuch,et al.  Two new classes of non-iterative coupled-cluster methods derived from the method of moments of coupled-cluster equations , 2006 .

[173]  J. Gauss,et al.  Towards a spin-adapted coupled-cluster theory for high-spin open-shell states. , 2006, The Journal of chemical physics.

[174]  F. Weigend Accurate Coulomb-fitting basis sets for H to Rn. , 2006, Physical chemistry chemical physics : PCCP.

[175]  J. Stanton,et al.  Simple(r) algebraic equation for transition moments of fundamental transitions in vibrational second-order perturbation theory , 2006 .

[176]  Werner Kutzelnigg,et al.  Quasirelativistic theory equivalent to fully relativistic theory. , 2005, The Journal of chemical physics.

[177]  Piotr Piecuch,et al.  Renormalized coupled-cluster methods exploiting left eigenstates of the similarity-transformed Hamiltonian. , 2005, The Journal of chemical physics.

[178]  Mihály Kállay,et al.  Approximate treatment of higher excitations in coupled-cluster theory. , 2005, The Journal of chemical physics.

[179]  Jonathan Tennyson,et al.  Water vapour line assignments in the 9250–26 000 cm−1 frequency range , 2005 .

[180]  M. Heckert,et al.  Molecular equilibrium geometries based on coupled-cluster calculations including quadruple excitations , 2005 .

[181]  Mihály Kállay,et al.  Coupled-cluster methods including noniterative corrections for quadruple excitations. , 2005, The Journal of chemical physics.

[182]  Roland Lindh,et al.  New relativistic ANO basis sets for transition metal atoms. , 2005, The journal of physical chemistry. A.

[183]  Frank Neese,et al.  Efficient and accurate approximations to the molecular spin-orbit coupling operator and their use in molecular g-tensor calculations. , 2005, The Journal of chemical physics.

[184]  Vincenzo Barone,et al.  Anharmonic vibrational properties by a fully automated second-order perturbative approach. , 2005, The Journal of chemical physics.

[185]  Juana Vázquez,et al.  HEAT: High accuracy extrapolated ab initio thermochemistry. , 2004, The Journal of chemical physics.

[186]  Jürgen Gauss,et al.  Calculation of excited-state properties using general coupled-cluster and configuration-interaction models. , 2004, The Journal of chemical physics.

[187]  J. Gauss,et al.  On the vertical excitation energy of cyclopentadiene. , 2004, The Journal of chemical physics.

[188]  J. Gauss,et al.  Calculation of spin-current densities using gauge-including atomic orbitals , 2004 .

[189]  So Hirata,et al.  Higher-order equation-of-motion coupled-cluster methods. , 2004, The Journal of chemical physics.

[190]  W. D. Allen,et al.  Toward subchemical accuracy in computational thermochemistry: focal point analysis of the heat of formation of NCO and [H,N,C,O] isomers. , 2004, The Journal of chemical physics.

[191]  Vincenzo Barone,et al.  Accurate vibrational spectra of large molecules by density functional computations beyond the harmonic approximation: the case of uracil and 2-thiouracil , 2004 .

[192]  Karol Kowalski,et al.  New coupled-cluster methods with singles, doubles, and noniterative triples for high accuracy calculations of excited electronic states. , 2004, The Journal of chemical physics.

[193]  Mihály Kállay,et al.  W3 theory: robust computational thermochemistry in the kJ/mol accuracy range. , 2003, The Journal of chemical physics.

[194]  Jürgen Gauss,et al.  Analytic second derivatives for general coupled-cluster and configuration-interaction models. , 2003, The Journal of chemical physics.

[195]  L. Halonen,et al.  Calculation of spectroscopic parameters and vibrational overtones of methanol , 2003 .

[196]  H. Schaefer,et al.  Use of 2h and 3h - p-like coupled-cluster Tamm-Dancoff approaches for the equilibrium properties of ozone , 2003 .

[197]  T. Helgaker,et al.  Automated calculation of fundamental frequencies: Application to AlH3 using the coupled-cluster singles-and-doubles with perturbative triples method , 2003 .

[198]  Rudolf Burcl,et al.  Vibrational spectra of furan, pyrrole, and thiophene from a density functional theory anharmonic force field. , 2003, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[199]  Thomas Bondo Pedersen,et al.  Reduced scaling in electronic structure calculations using Cholesky decompositions , 2003 .

[200]  Mihály Kállay,et al.  A general state-selective multireference coupled-cluster algorithm , 2002 .

[201]  J. Gauss Analytic second derivatives for the full coupled-cluster singles, doubles, and triples model: Nuclear magnetic shielding constants for BH, HF, CO, N2, N2O, and O3 , 2002 .

[202]  F. Weigend,et al.  Efficient use of the correlation consistent basis sets in resolution of the identity MP2 calculations , 2002 .

[203]  J. Gauss,et al.  Analytic gradients for the coupled-cluster singles, doubles, and triples (CCSDT) model , 2002 .

[204]  J. Stanton Coupled-cluster theory, pseudo-Jahn–Teller effects and conical intersections , 2001 .

[205]  Kenneth G. Dyall,et al.  Interfacing relativistic and nonrelativistic methods. IV. One- and two-electron scalar approximations , 2001 .

[206]  Rodney J. Bartlett,et al.  Coupled-cluster theory for excited electronic states: The full equation-of-motion coupled-cluster single, double, and triple excitation method , 2001 .

[207]  R. S. Williamson,et al.  Experimental Energy Levels of the Water Molecule , 2001 .

[208]  Mihály Kállay,et al.  Higher excitations in coupled-cluster theory , 2001 .

[209]  P. Piecuch,et al.  New type of noniterative energy corrections for excited electronic states: Extension of the method of moments of coupled-cluster equations to the equation-of-motion coupled-cluster formalism , 2001 .

[210]  J. Gauss,et al.  Triple excitation effects in coupled-cluster calculations of indirect spin–spin coupling constants , 2001 .

[211]  Karol Kowalski,et al.  The active-space equation-of-motion coupled-cluster methods for excited electronic states: Full EOMCCSDt , 2001 .

[212]  So Hirata,et al.  Perturbative corrections to coupled-cluster and equation-of-motion coupled-cluster energies: A determinantal analysis , 2001 .

[213]  K. Fægri Relativistic Gaussian basis sets for the elements K – Uuo , 2001 .

[214]  P. Jørgensen,et al.  Triple excitation effects in coupled cluster calculations of Verdet constants , 2000 .

[215]  J. Olsen,et al.  Divergence in Møller–Plesset theory: A simple explanation based on a two-state model , 2000 .

[216]  John F. Stanton,et al.  Analytic second derivatives in high-order many-body perturbation and coupled-cluster theories: Computational considerations and applications , 2000 .

[217]  J. Gauss,et al.  Analytic first and second derivatives for the CCSDT-n (n = 1-3) models : a first step towards the efficient calculation of ccsdt properties , 2000 .

[218]  N. Handy,et al.  Experimental and theoretical anharmonicity for benzene using density functional theory , 2000 .

[219]  John F. Stanton,et al.  A simple scheme for the direct calculation of ionization potentials with coupled-cluster theory that exploits established excitation energy methods , 1999 .

[220]  J. Stanton,et al.  Application of an equation-of-motion coupled cluster method including higher-order corrections to potential energy surfaces of radicals , 1999 .

[221]  Jan M. L. Martin,et al.  TOWARDS STANDARD METHODS FOR BENCHMARK QUALITY AB INITIO THERMOCHEMISTRY :W1 AND W2 THEORY , 1999, physics/9904038.

[222]  Uttam Sinha Mahapatra,et al.  A size-consistent state-specific multireference coupled cluster theory: Formal developments and molecular applications , 1999 .

[223]  Roland Lindh,et al.  Integral-direct electron correlation methods , 1999 .

[224]  O. Christiansen First-order nonadiabatic coupling matrix elements using coupled cluster methods. I. Theory , 1999 .

[225]  J. Gauss,et al.  Analytic UHF-CCSD(T) second derivatives: implementation and application to the calculation of the vibration-rotation interaction constants of NCO and NCS , 1998 .

[226]  John F. Stanton,et al.  Triple excitation effects in coupled-cluster calculations of frequency-dependent hyperpolarizabilities , 1998 .

[227]  Holger Patzelt,et al.  RI-MP2: optimized auxiliary basis sets and demonstration of efficiency , 1998 .

[228]  John F. Stanton,et al.  The effect of triple excitations in coupled cluster calculations of frequency-dependent polarizabilities , 1998 .

[229]  J. Gauss,et al.  The equilibrium structure and fundamental vibrational frequencies of dioxirane , 1998 .

[230]  Rodney J. Bartlett,et al.  Noniterative energy corrections through fifth-order to the coupled cluster singles and doubles method , 1998 .

[231]  J. Gauss,et al.  NON-ABELIAN POINT GROUP SYMMETRY IN DIRECT SECOND-ORDER MANY-BODY PERTURBATION THEORY CALCULATIONS OF NMR CHEMICAL SHIFTS , 1998 .

[232]  Uttam Sinha Mahapatra,et al.  A state-specific multi-reference coupled cluster formalism with molecular applications , 1998 .

[233]  Poul Jørgensen,et al.  Response functions from Fourier component variational perturbation theory applied to a time-averaged quasienergy , 1998 .

[234]  John F. Stanton,et al.  INVESTIGATION OF AN ASYMMETRIC TRIPLE-EXCITATION CORRECTION FOR COUPLED-CLUSTER ENERGIES , 1998 .

[235]  J. Stanton Why CCSD(T) works: a different perspective , 1997 .

[236]  J. Gauss,et al.  Spin-restricted open-shell coupled-cluster theory , 1997 .

[237]  F. Weigend,et al.  RI-MP2: first derivatives and global consistency , 1997 .

[238]  Florian Weigend,et al.  Auxiliary basis sets for main row atoms and transition metals and their use to approximate Coulomb potentials , 1997 .

[239]  J. Gauss,et al.  Analytic CCSD(T) second derivatives , 1997 .

[240]  Trygve Helgaker,et al.  Basis-set convergence of correlated calculations on water , 1997 .

[241]  J. Gauss,et al.  Coupled-cluster calculations of spin-rotation constants , 1997 .

[242]  Kenneth G. Dyall,et al.  INTERFACING RELATIVISTIC AND NONRELATIVISTIC METHODS. I. NORMALIZED ELIMINATION OF THE SMALL COMPONENT IN THE MODIFIED DIRAC EQUATION , 1997 .

[243]  P. Jørgensen,et al.  Frequency-dependent first hyperpolarizabilities using coupled cluster quadratic response theory , 1997 .

[244]  W. Kutzelnigg The adiabatic approximation I. The physical background of the Born-Handy ansatz , 1997 .

[245]  Trygve Helgaker,et al.  The CC3 model: An iterative coupled cluster approach including connected triples , 1997 .

[246]  W. Klopper Simple recipe for implementing computation of first‐order relativistic corrections to electron correlation energies in framework of direct perturbation theory , 1997 .

[247]  J. Gauss,et al.  Analytic Evaluation of Second Derivatives of the Energy: Computational Strategies for the CCSD and CCSD(T) Approximations , 1997 .

[248]  John F. Stanton,et al.  A simple correction to final state energies of doublet radicals described by equation-of-motion coupled cluster theory in the singles and doubles approximation , 1997 .

[249]  K. Dyall,et al.  Formulation and implementation of a relativistic unrestricted coupled-cluster method including noniterative connected triples , 1996 .

[250]  J. Gauss,et al.  A direct implementation of the GIAO-MBPT(2) method for calculating NMR chemical shifts. Application to the naphthalenium and anthracenium ions , 1996 .

[251]  Jeppe Olsen,et al.  Surprising cases of divergent behavior in Mo/ller–Plesset perturbation theory , 1996 .

[252]  John D. Watts,et al.  Iterative and non-iterative triple excitation corrections in coupled-cluster methods for excited electronic states: the EOM-CCSDT-3 and EOM-CCSD(T̃) methods , 1996 .

[253]  J. Gauss,et al.  Perturbation‐dependent atomic orbitals for the calculation of spin‐rotation constants and rotational g tensors , 1996 .

[254]  Poul Jørgensen,et al.  Perturbative triple excitation corrections to coupled cluster singles and doubles excitation energies , 1996 .

[255]  N. Handy,et al.  The adiabatic approximation , 1996 .

[256]  Christel M. Marian,et al.  A mean-field spin-orbit method applicable to correlated wavefunctions , 1996 .

[257]  Rodney J. Bartlett,et al.  Electron correlation effects on the theoretical calculation of nuclear magnetic resonance spin–spin coupling constants , 1996 .

[258]  John F. Stanton,et al.  Perturbative treatment of triple excitations in coupled‐cluster calculations of nuclear magnetic shielding constants , 1996 .

[259]  D. Cremer,et al.  SIXTH-ORDER MANY-BODY PERTURBATION THEORY. II. IMPLEMENTATION AND APPLICATION , 1996 .

[260]  D. Cremer,et al.  Sixth-order many-body perturbation theory. I. Basic theory and derivation of the energy formula , 1996 .

[261]  Ove Christiansen,et al.  Response functions in the CC3 iterative triple excitation model , 1995 .

[262]  Poul Jørgensen,et al.  The second-order approximate coupled cluster singles and doubles model CC2 , 1995 .

[263]  Thom H. Dunning,et al.  Gaussian basis sets for use in correlated molecular calculations. V. Core-valence basis sets for boron through neon , 1995 .

[264]  John F. Stanton,et al.  Perturbative treatment of the similarity transformed Hamiltonian in equation‐of‐motion coupled‐cluster approximations , 1995 .

[265]  Marco Häser,et al.  Auxiliary basis sets to approximate Coulomb potentials , 1995 .

[266]  Rodney J. Bartlett,et al.  Equation of motion coupled cluster method for electron attachment , 1995 .

[267]  John D. Watts,et al.  Economical triple excitation equation-of-motion coupled-cluster methods for excitation energies , 1995 .

[268]  W. Kutzelnigg,et al.  Relativistic Hartree–Fock by means of stationary direct perturbation theory. I. General theory , 1995 .

[269]  John F. Stanton,et al.  Gauge‐invariant calculation of nuclear magnetic shielding constants at the coupled–cluster singles and doubles level , 1995 .

[270]  J. Gauss,et al.  Analytic energy derivatives for ionized states described by the equation‐of‐motion coupled cluster method , 1994 .

[271]  J. Gauss GIAO-MBPT(3) and GIAO-SDQ-MBPT(4) calculations of nuclear magnetic shielding constants , 1994 .

[272]  R. Bartlett,et al.  Analytic energy gradients for the two-determinant coupled cluster method with application to singlet excited states of butadiene and ozone , 1994 .

[273]  R. Bartlett,et al.  The inclusion of connected triple excitations in the equation‐of‐motion coupled‐cluster method , 1994 .

[274]  Hideo Sekino,et al.  Coupled‐cluster calculations of indirect nuclear coupling constants: The importance of non‐Fermi contact contributions , 1994 .

[275]  J. Gauss,et al.  Analytic energy gradients for the equation‐of‐motion coupled‐cluster method: Implementation and application to the HCN/HNC system , 1994 .

[276]  H. Koch,et al.  Calculation of size‐intensive transition moments from the coupled cluster singles and doubles linear response function , 1994 .

[277]  Henrik Koch,et al.  Calculation of frequency-dependent polarizabilities using coupled-cluster response theory , 1994 .

[278]  Manabu Oumi,et al.  A doubles correction to electronic excited states from configuration interaction in the space of single substitutions , 1994 .

[279]  K. Dyall An exact separation of the spin‐free and spin‐dependent terms of the Dirac–Coulomb–Breit Hamiltonian , 1994 .

[280]  L. Cederbaum,et al.  Ground state dynamics of NO3: Multimode vibronic borrowing including thermal effects , 1994 .

[281]  R. Bartlett,et al.  Relativistic effects at the correlated level. An application to interhalogens , 1993 .

[282]  John F. Stanton,et al.  Many‐body methods for excited state potential energy surfaces. I. General theory of energy gradients for the equation‐of‐motion coupled‐cluster method , 1993 .

[283]  J. Almlöf,et al.  Integral approximations for LCAO-SCF calculations , 1993 .

[284]  Martin Head-Gordon,et al.  Single-reference theories of molecular excited states with single and double substitutions , 1993 .

[285]  J. Gauss Effects of electron correlation in the calculation of nuclear magnetic resonance chemical shifts , 1993 .

[286]  Jürgen Gauss,et al.  Coupled‐cluster methods with noniterative triple excitations for restricted open‐shell Hartree–Fock and other general single determinant reference functions. Energies and analytical gradients , 1993 .

[287]  Donald C. Comeau,et al.  The equation-of-motion coupled-cluster method. Applications to open- and closed-shell reference states , 1993 .

[288]  John F. Stanton,et al.  The equation of motion coupled‐cluster method. A systematic biorthogonal approach to molecular excitation energies, transition probabilities, and excited state properties , 1993 .

[289]  David Feller,et al.  The use of systematic sequences of wave functions for estimating the complete basis set, full configuration interaction limit in water , 1993 .

[290]  Stefano Evangelisti,et al.  A vector and parallel full configuration interaction algorithm , 1993 .

[291]  John F. Stanton,et al.  Restricted open-shell Hartree-Fock-based many-body perturbation theory: Theory and application of energy and gradient calculations , 1992 .

[292]  R. Bartlett,et al.  Open-shell analytical energy gradients for triple excitation many-body, coupled-cluster methods: MBPT(4), CCSD+T(CCSD), CCSD(T),and QCISD(T) , 1992 .

[293]  R. Bartlett,et al.  On the choice of orbitals for symmetry breaking problems with application to NO3 , 1992 .

[294]  R. Bartlett,et al.  The coupled‐cluster single, double, triple, and quadruple excitation method , 1992 .

[295]  P. Jørgensen,et al.  Interconversion of diborane(4) isomers , 1992 .

[296]  J. Gauss Calculation of NMR chemical shifts at second-order many-body perturbation theory using gauge-including atomic orbitals , 1992 .

[297]  John F. Stanton,et al.  The ACES II program system , 1992 .

[298]  Michael A. Robb,et al.  An evaluation of three direct MC-SCF procedures , 1992 .

[299]  Ernest R. Davidson,et al.  Perturbation theory for open shell systems , 1991 .

[300]  John F. Stanton,et al.  Many-body perturbation theory with a restricted open-shell Hartree—Fock reference , 1991 .

[301]  Peter J. Knowles,et al.  Restricted Møller—Plesset theory for open-shell molecules , 1991 .

[302]  N. Oliphant,et al.  Coupled‐cluster method truncated at quadruples , 1991 .

[303]  Peter J. Knowles,et al.  Open-shell M∅ller—Plesset perturbation theory , 1991 .

[304]  T. Helgaker,et al.  An electronic Hamiltonian for origin independent calculations of magnetic properties , 1991 .

[305]  R. Bartlett,et al.  Coupled‐cluster open‐shell analytic gradients: Implementation of the direct product decomposition approach in energy gradient calculations , 1991 .

[306]  R. Bartlett,et al.  Analytic evaluation of energy gradients at the coupled‐cluster singles and doubles level using quasi‐restricted Hartree–Fock open‐shell reference functions , 1991 .

[307]  John F. Stanton,et al.  Analytic energy gradients for open-shell coupled-cluster singles and doubles (CCSD) calculations using restricted open-shell Hartree—Fock (ROHF) reference functions , 1991 .

[308]  R. Bartlett,et al.  Recursive intermediate factorization and complete computational linearization of the coupled-cluster single, double, triple, and quadruple excitation equations , 1991 .

[309]  R. Bartlett,et al.  A coupled‐cluster study of the ground state of C+3 , 1991 .

[310]  R. Bartlett,et al.  A direct product decomposition approach for symmetry exploitation in many-body methods. I. Energy calculations , 1991 .

[311]  R. Bartlett,et al.  Potential nonrigidity of the NO3 radical , 1991 .

[312]  Nevin Horace Oliphant,et al.  A multireference coupled-cluster method using a single-reference formalism. , 1991 .

[313]  Peter Pulay,et al.  Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations , 1990 .

[314]  R. Bartlett,et al.  The coupled‐cluster single, double, and triple excitation model for open‐shell single reference functions , 1990 .

[315]  Henrik Koch,et al.  Coupled cluster response functions , 1990 .

[316]  Trygve Helgaker,et al.  Excitation energies from the coupled cluster singles and doubles linear response function (CCSDLR). Applications to Be, CH+, CO, and H2O , 1990 .

[317]  W. Green,et al.  Anharmonic corrections to vibrational transition intensities , 1990 .

[318]  Trygve Helgaker,et al.  Coupled cluster energy derivatives. Analytic Hessian for the closed‐shell coupled cluster singles and doubles wave function: Theory and applications , 1990 .

[319]  John D. Watts,et al.  Non-iterative fifth-order triple and quadruple excitation energy corrections in correlated methods , 1990 .

[320]  R. Bartlett,et al.  Fifth‐order many‐body perturbation theory for molecular correlation energies , 1989 .

[321]  M. Head‐Gordon,et al.  A fifth-order perturbation comparison of electron correlation theories , 1989 .

[322]  W. Thiel,et al.  Anharmonic force fields from analytic second derivatives: Method and application to methyl bromide , 1989 .

[323]  K. Lehmann Beyond the x-K relations , 1989 .

[324]  Volker Staemmler,et al.  An efficient first-order CASSCF method based on the renormalized Fock-operator technique , 1989 .

[325]  R. Bartlett Coupled-cluster approach to molecular structure and spectra: a step toward predictive quantum chemistry , 1989 .

[326]  Rodney J. Bartlett,et al.  Analytic energy derivatives in many‐body methods. I. First derivatives , 1989 .

[327]  D. Neumark,et al.  Observation of the Ã(2B2) and C̃(2A2) states of NO2 by negative ion photoelectron spectroscopy of NO−2 , 1989 .

[328]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[329]  Marco Häser,et al.  Improvements on the direct SCF method , 1989 .

[330]  Henry F. Schaefer,et al.  A new implementation of the full CCSDT model for molecular electronic structure , 1988 .

[331]  Jeppe Olsen,et al.  Determinant based configuration interaction algorithms for complete and restricted configuration interaction spaces , 1988 .

[332]  Trygve Helgaker,et al.  Mo/ller–Plesset energy derivatives , 1988 .

[333]  Rodney J. Bartlett,et al.  An open-shell spin-restricted coupled cluster method: application to ionization potentials in nitrogen , 1988 .

[334]  Pekka Pyykkö,et al.  Relativistic effects in structural chemistry , 1988 .

[335]  Trygve Helgaker,et al.  Analytical Calculation of Geometrical Derivatives in Molecular Electronic Structure Theory , 1988 .

[336]  G. Scuseria,et al.  The optimization of molecular orbitals for coupled cluster wavefunctions , 1987 .

[337]  Martin Head-Gordon,et al.  Quadratic configuration interaction. A general technique for determining electron correlation energies , 1987 .

[338]  Julia E. Rice,et al.  Analytic evaluation of energy gradients for the single and double excitation coupled cluster (CCSD) wave function: Theory and application , 1987 .

[339]  R. Bartlett,et al.  Property evaluation and orbital relaxation in coupled cluster methods , 1987 .

[340]  R. Bartlett,et al.  The full CCSDT model for molecular electronic structure , 1987 .

[341]  Peter R. Taylor,et al.  General contraction of Gaussian basis sets. I. Atomic natural orbitals for first‐ and second‐row atoms , 1987 .

[342]  Julia E. Rice,et al.  The closed‐shell coupled cluster single and double excitation (CCSD) model for the description of electron correlation. A comparison with configuration interaction (CISD) results , 1987 .

[343]  R. Bartlett,et al.  Towards a full CCSDT model for electron correlation. CCSDT-n models , 1987 .

[344]  Hans Ågren,et al.  A direct, restricted-step, second-order MC SCF program for large scale ab initio calculations , 1986 .

[345]  A. Rutkowski Relativistic perturbation theory. I. A new perturbation approach to the Dirac equation , 1986 .

[346]  R. Bartlett Analytical Evaluation of Gradients in Coupled-Cluster and Many-Body Perturbation Theory , 1986 .

[347]  R. Amos,et al.  On the efficient evaluation of analytic energy gradients , 1985 .

[348]  Peter J. Knowles,et al.  On the convergence of the Møller-Plesset perturbation series , 1985 .

[349]  P. Knowles,et al.  A second order multiconfiguration SCF procedure with optimum convergence , 1985 .

[350]  Krishnan Raghavachari,et al.  An augmented coupled cluster method and its application to the first‐row homonuclear diatomics , 1985 .

[351]  Kimihiko Hirao,et al.  The calculation of higher-order energies in the many-body perturbation theory series , 1985 .

[352]  Lorenz S. Cederbaum,et al.  Multimode Molecular Dynamics Beyond the Born‐Oppenheimer Approximation , 2007 .

[353]  R. Bartlett,et al.  A coupled cluster approach with triple excitations , 1984 .

[354]  Henry F. Schaefer,et al.  On the evaluation of analytic energy derivatives for correlated wave functions , 1984 .

[355]  Peter J. Knowles,et al.  A new determinant-based full configuration interaction method , 1984 .

[356]  Hans Ågren,et al.  MC SCF optimization using the direct, restricted step, second-order norm-extended optimization method , 1984 .

[357]  R. Bartlett,et al.  Analytical gradients for the coupled-cluster method† , 1984 .

[358]  Hideo Sekino,et al.  A linear response, coupled‐cluster theory for excitation energy , 1984 .

[359]  Poul Jo,et al.  A direct approach to second‐order MCSCF calculations using a norm extended optimization scheme , 1984 .

[360]  J. Arponen,et al.  Variational principles and linked-cluster exp S expansions for static and dynamic many-body problems , 1983 .

[361]  Danny L. Yeager,et al.  Guaranteed convergence in ground state multiconfigurational self‐consistent field calculations , 1983 .

[362]  J. Almlöf,et al.  Principles for a direct SCF approach to LICAO–MOab‐initio calculations , 1982 .

[363]  K. Siegbahn Electron spectroscopy for atoms, molecules, and condensed matter. , 1982, Science.

[364]  T. Helgaker Simple Derivation of the Potential Energy Gradient for an Arbitrary Electronic Wave Function , 1982 .

[365]  R. Bartlett,et al.  A full coupled‐cluster singles and doubles model: The inclusion of disconnected triples , 1982 .

[366]  Michael A. Robb,et al.  Direct minimization in mc scf theory. the quasi-newton method , 1981 .

[367]  H. Monkhorst,et al.  Coupled-cluster method for multideterminantal reference states , 1981 .

[368]  R. Bartlett Many-Body Perturbation Theory and Coupled Cluster Theory for Electron Correlation in Molecules , 1981 .

[369]  W. Miller,et al.  ON FINDING TRANSITION STATES , 1981 .

[370]  Hans-Joachim Werner,et al.  A quadratically convergent MCSCF method for the simultaneous optimization of several states , 1981 .

[371]  Debashis Mukherjee,et al.  Application of linear response theory in a coupled cluster framework for the calculation of ionization potentials , 1981 .

[372]  C. E. Dykstra,et al.  An electron pair operator approach to coupled cluster wave functions. Application to He2, Be2, and Mg2 and comparison with CEPA methods , 1981 .

[373]  B. Roos,et al.  The complete active space SCF (CASSCF) method in a Newton–Raphson formulation with application to the HNO molecule , 1981 .

[374]  Ajit Banerjee,et al.  The coupled‐cluster method with a multiconfiguration reference state , 1981 .

[375]  K. Emrich,et al.  An extension of the coupled cluster formalism to excited states (I) , 1981 .

[376]  Ivan Hubač,et al.  Correlation energy of open-shell systems. Application of the many-body Rayleigh-Schrödinger perturbation theory in the restricted Roothaan-Hartree-Fock formalism , 1980 .

[377]  Nicholas C. Handy,et al.  Multi-root configuration interaction calculations , 1980 .

[378]  P. Pulay Convergence acceleration of iterative sequences. the case of scf iteration , 1980 .

[379]  Lorenz S. Cederbaum,et al.  Many-body theory of core holes , 1980 .

[380]  B. Roos,et al.  A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach , 1980 .

[381]  Michael J. Frisch,et al.  Contribution of triple substitutions to the electron correlation energy in fourth order perturbation theory , 1980 .

[382]  Hiroshi Nakatsuji,et al.  Cluster expansion of the wavefunction. Electron correlations in ground and excited states by SAC (symmetry-adapted-cluster) and SAC CI theories , 1979 .

[383]  Hiroshi Nakatsuji,et al.  Cluster expansion of the wavefunction. Calculation of electron correlations in ground and excited states by SAC and SAC CI theories , 1979 .

[384]  John R. Sabin,et al.  On some approximations in applications of Xα theory , 1979 .

[385]  K. Pitzer RELATIVISTIC EFFECTS ON CHEMICAL PROPERTIES , 1979 .

[386]  N. Nakatsuji,et al.  Cluster expansion of the wavefunction. Excited states , 1978 .

[387]  Rodney J. Bartlett,et al.  Many‐body perturbation theory, coupled‐pair many‐electron theory, and the importance of quadruple excitations for the correlation problem , 1978 .

[388]  J. S. Binkley,et al.  Electron correlation theories and their application to the study of simple reaction potential surfaces , 1978 .

[389]  Kimihiko Hirao,et al.  Cluster expansion of the wavefunction. Symmetry-adapted-cluster expansion, its variational determination, and extension of open-shell orbital theory , 1978 .

[390]  E. Davidson,et al.  One- and two-electron integrals over cartesian gaussian functions , 1978 .

[391]  N. H. Beebe,et al.  Simplifications in the generation and transformation of two‐electron integrals in molecular calculations , 1977 .

[392]  L. C. Snyder,et al.  Polyatom : A General Computer Program for Ab Initio Calculations , 1977 .

[393]  D. C. Griffin,et al.  Approximate relativistic corrections to atomic radial wave functions , 1976 .

[394]  N. Hush,et al.  The coupled-pair approximation in a basis of independent-pair natural orbitals , 1976 .

[395]  R. Bartlett,et al.  Erratum: Pair-correlation energies in sodium hydride with many-body perturbation theory , 1974 .

[396]  W. Flygare,et al.  Magnetic interactions in molecules and an analysis of molecular electronic charge distribution from magnetic parameters , 1974 .

[397]  Juergen Hinze,et al.  MC-SCF. I. The multi-configuration self-consistent-field method , 1973 .

[398]  Volker Dyczmons,et al.  No N4-dependence in the calculation of large molecules , 1973 .

[399]  J. L. Whitten,et al.  Coulombic potential energy integrals and approximations , 1973 .

[400]  I. Mills Vibration-rotation structure in asymmetric and symmetric top molecules , 1972 .

[401]  R. Ditchfield,et al.  Molecular Orbital Theory of Magnetic Shielding and Magnetic Susceptibility , 1972 .

[402]  J. Pople,et al.  Self‐Consistent Molecular Orbital Methods. X. Molecular Orbital Studies of Excited States with Minimal and Extended Basis Sets , 1971 .

[403]  Ian M. Mills,et al.  Force Constants and Dipole-Moment Derivatives of Molecules from Perturbed Hartree-Fock Calculations. I , 1968 .

[404]  Bernard Levy,et al.  Generalized brillouin theorem for multiconfigurational SCF theories , 1968 .

[405]  John F. Stanton,et al.  Coupled-cluster calculations of nuclear magnetic resonance chemical shifts , 1967 .

[406]  J. Cizek On the Correlation Problem in Atomic and Molecular Systems. Calculation of Wavefunction Components in Ursell-Type Expansion Using Quantum-Field Theoretical Methods , 1966 .

[407]  D. Thouless Stability conditions and nuclear rotations in the Hartree-Fock theory , 1960 .

[408]  F. Coester,et al.  Short-range correlations in nuclear wave functions , 1960 .

[409]  A. Dalgarno,et al.  A perturbation calculation of properties of the helium iso-electronic sequence , 1958, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[410]  H. F. Hameka On the nuclear magnetic shielding in the hydrogen molecule , 1958 .

[411]  F. Coester,et al.  Bound states of a many-particle system , 1958 .

[412]  W. S. Benedict,et al.  Rotation‐Vibration Spectra of Deuterated Water Vapor , 1956 .

[413]  S. Dancoff Non-Adiabatic Meson Theory of Nuclear Forces , 1950 .

[414]  I. Tamm Relativistic Interaction of Elementary Particles , 1945 .

[415]  David M. Dennison,et al.  The Water Vapor Molecule , 1940 .

[416]  F. London,et al.  Théorie quantique des courants interatomiques dans les combinaisons aromatiques , 1937 .

[417]  M. Plesset,et al.  Note on an Approximation Treatment for Many-Electron Systems , 1934 .

[418]  E. Fermi Über den Ramaneffekt des Kohlendioxyds , 1931 .

[419]  J. V. Vleck On sigma-Type Doubling and Electron Spin in the Spectra of Diatomic Molecules , 1929 .

[420]  W. Heisenberg,et al.  Zur Quantentheorie der Molekeln , 1924 .