Nucleotide composition string selection in HIV-1 subtyping using whole genomes

MOTIVATION The availability of the whole genomic sequences of HIV-1 viruses provides an excellent resource for studying the HIV-1 phylogenies using all the genetic materials. However, such huge volumes of data create computational challenges in both memory consumption and CPU usage. RESULTS We propose the complete composition vector representation for an HIV-1 strain, and a string scoring method to extract the nucleotide composition strings that contain the richest evolutionary information for phylogenetic analysis. In this way, a large-scale whole genome phylogenetic analysis for thousands of strains can be done both efficiently and effectively. By using 42 carefully curated strains as references, we apply our method to subtype 1156 HIV-1 strains (10.5 million nucleotides in total), which include 825 pure subtype strains and 331 recombinants. Our results show that our nucleotide composition string selection scheme is computationally efficient, and is able to define both pure subtypes and recombinant forms for HIV-1 strains using the 5000 top ranked nucleotide strings. AVAILABILITY The Java executable and the HIV-1 datasets are accessible through 'http://www.cs.ualberta.ca/~ghlin/src/WebTools/hiv.php. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.

[1]  Aleksandar Milosavljevic,et al.  Discovering Sequence Similarity by the Algorithmic Significance Method , 1993, ISMB.

[2]  J. Welsh,et al.  Molecular classification of human carcinomas by use of gene expression signatures. , 2001, Cancer research.

[3]  M Dauchet,et al.  Compression and genetic sequence analysis. , 1996, Biochimie.

[4]  Tulio de Oliveira,et al.  An automated genotyping system for analysis of HIV-1 and other microbial sequences , 2005, Bioinform..

[5]  B. Snel,et al.  Genome evolution. Gene fusion versus gene fission. , 2000, Trends in Genetics.

[6]  B. Snel,et al.  Genome phylogeny based on gene content , 1999, Nature Genetics.

[7]  Joaquín Dopazo,et al.  Phylogenomics and the number of characters required for obtaining an accurate phylogeny of eukaryote model species , 2004, ISMB/ECCB.

[8]  Michael W. Berry,et al.  A Comprehensive Whole Genome Bacterial Phylogeny Using Correlated Peptide Motifs Defined in a High Dimensional Vector Space , 2003, J. Bioinform. Comput. Biol..

[9]  D. Burke,et al.  HIV-1 genetic diversity. , 1996, AIDS.

[10]  Guohui Lin,et al.  Whole Genome Phylogeny via Complete Composition Vectors , 2005 .

[11]  A. Harrison,et al.  A statistical model for HIV-1 sequence classification using the subtype analyser (STAR) , 2005, Bioinform..

[12]  J. Leader,et al.  A comprehensive vertebrate phylogeny using vector representations of protein sequences from whole genomes. , 2002, Molecular biology and evolution.

[13]  N. Saitou,et al.  The neighbor-joining method: a new method for reconstructing phylogenetic trees. , 1987, Molecular biology and evolution.

[14]  S. Karlin,et al.  Dinucleotide relative abundance extremes: a genomic signature. , 1995, Trends in genetics : TIG.

[15]  S. Fitz-Gibbon,et al.  Using Homolog Groups to Create a Whole-Genomic Tree of Free-Living Organisms: An Update , 2002, Journal of Molecular Evolution.

[16]  Brian T. Foley,et al.  HIV-1 Subtype and Circulating Recombinant Form (CRF) Reference Sequences, 2005 , 2005 .

[17]  Dong Xu,et al.  Phylogenetic analysis using complete signature information of whole genomes and clustered Neighbour-Joining method , 2006, Int. J. Bioinform. Res. Appl..

[18]  Xin Chen,et al.  A compression algorithm for DNA sequences and its applications in genome comparison , 2000, RECOMB '00.

[19]  G. Stuart,et al.  A whole genome perspective on the phylogeny of the plant virus family Tombusviridae , 2004, Archives of Virology.

[20]  Ji Qi,et al.  Prokaryote phylogeny without sequence alignment: from avoidance signature to composition distance , 2003, Computational Systems Bioinformatics. CSB2003. Proceedings of the 2003 IEEE Bioinformatics Conference. CSB2003.

[21]  J. Qi,et al.  Whole Proteome Prokaryote Phylogeny Without Sequence Alignment: A K-String Composition Approach , 2003, Journal of Molecular Evolution.

[22]  Stéphane Grumbach,et al.  A New Challenge for Compression Algorithms: Genetic Sequences , 1994, Inf. Process. Manag..

[23]  K. Crandall,et al.  The causes and consequences of HIV evolution , 2004, Nature Reviews Genetics.

[24]  David Posada,et al.  RDP2: recombination detection and analysis from sequence alignments , 2005, Bioinform..

[25]  Steve Baker,et al.  Integrated gene and species phylogenies from unaligned whole genome protein sequences , 2002, Bioinform..

[26]  Anne-Mieke Vandamme,et al.  Assessment of automated genotyping protocols as tools for surveillance of HIV-1 genetic diversity , 2006, AIDS.

[27]  Dirk Husmeier,et al.  TOPALi: software for automatic identification of recombinant sequences within DNA multiple alignments , 2004, Bioinform..

[28]  E. Herniou,et al.  Use of Whole Genome Sequence Data To Infer Baculovirus Phylogeny , 2001, Journal of Virology.

[29]  Tatiana A. Tatusova,et al.  A web-based genotyping resource for viral sequences , 2004, Nucleic Acids Res..

[30]  Z. Xuan,et al.  Phylogeny Based on Whole Genome as inferred from Complete Information Set Analysis , 2002, Journal of biological physics.