High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications

[1]  J. Tarascon,et al.  Growth and Electrochemical Characterization versus Lithium of Fe3O4 Electrodes Made by Electrodeposition , 2006 .

[2]  Ying Shirley Meng,et al.  Electrodes with High Power and High Capacity for Rechargeable Lithium Batteries , 2006, Science.

[3]  J. Gearhart,et al.  In vitro toxicity of nanoparticles in BRL 3A rat liver cells. , 2005, Toxicology in vitro : an international journal published in association with BIBRA.

[4]  Bruno Scrosati,et al.  A High-Rate, Nanocomposite LiFePO4 ∕ Carbon Cathode , 2005 .

[5]  Yong‐Mook Kang,et al.  A study on the charge-discharge mechanism of Co3O4 as an anode for the Li ion secondary battery , 2005 .

[6]  Electrochemically Deposited NanoColumnar Junctions of Cu2O and ZnO on Ni Nanowires , 2005 .

[7]  P. Balaya,et al.  Li-Storage via Heterogeneous Reaction in Selected Binary Metal Fluorides and Oxides , 2004 .

[8]  C. Dustmann Advances in ZEBRA batteries , 2004 .

[9]  H. Matsushima,et al.  Electrodeposition of Cu nanowire arrays with a template , 2003 .

[10]  Fan Zhang,et al.  Colloidal-Crystal-Templated Synthesis of Ordered Macroporous Electrode Materials for Lithium Secondary Batteries , 2003 .

[11]  C. R. Martin,et al.  A Nanostructured Honeycomb Carbon Anode , 2003 .

[12]  Dale Teeters,et al.  Vanadia xerogel nanocathodes used in lithium microbatteries , 2003 .

[13]  G. Pistoia,et al.  Lithium batteries : science and technology , 2003 .

[14]  M. Ueda,et al.  Double-pulse technique as an electrochemical tool for controlling the preparation of metallic nanoparticles , 2002 .

[15]  J. Carlsson,et al.  Electrochemical deposition of cylindrical Cu/Cu2O microstructures , 2002 .

[16]  J. Tarascon,et al.  Rationalization of the Low-Potential Reactivity of 3d-Metal-Based Inorganic Compounds toward Li , 2002 .

[17]  G. Amatucci,et al.  A Lithium Reaction Mechanism for Metal Nitride Electrodes , 2002 .

[18]  L. Nazar,et al.  Reversible lithium uptake by CoP3 at low potential: role of the anion , 2002 .

[19]  G. Amatucci,et al.  The Electrochemistry of Zn3 N 2 and LiZnN A Lithium Reaction Mechanism for Metal Nitride Electrodes , 2002 .

[20]  Ladislav Kavan,et al.  Facile synthesis of nanocrystalline Li4Ti5O12 (spinel) exhibiting fast Li insertion , 2002 .

[21]  J. George,et al.  Electrochemical synthesis of Ag/Co multilayered nanowires in porous polycarbonate membranes , 2002 .

[22]  C. R. Martin,et al.  Improving the Volumetric Energy Densities of Nanostructured V 2 O 5 Electrodes Prepared Using the Template Method , 2001 .

[23]  Sylvie Grugeon,et al.  Nano‐Sized Transition‐Metal Oxides as Negative‐Electrode Materials for Lithium‐Ion Batteries. , 2001 .

[24]  J. Tarascon,et al.  Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries , 2000, Nature.

[25]  Charles R. Martin,et al.  Rate Capabilities of Nanostructured LiMn2 O 4 Electrodes in Aqueous Electrolyte , 2000 .

[26]  M. Ziese,et al.  Magnetoresistance of magnetite , 2000 .

[27]  J. M. Elliott,et al.  Nanostructured tin for use as a negative electrode material in Li-ion batteries , 1999 .

[28]  C. R. Martin,et al.  Sol-gel-based template synthesis and Li-insertion rate performance of nanostructured vanadium pentoxide , 1999 .

[29]  D. Dobrev,et al.  Electrochemical preparation of metal microstructures on large areas of etched ion track membranes , 1999 .

[30]  K. Jirage,et al.  Chemical‐Vapor Deposition‐Based Template Synthesis of Microtubular TiS2 Battery Electrodes , 1997 .

[31]  C. R. Martin,et al.  Template Synthesis of Polypyrrole‐Coated Spinel LiMn2 O 4 Nanotubules and Their Properties as Cathode Active Materials for Lithium Batteries , 1997 .

[32]  C. R. Martin,et al.  Membrane-Based Synthesis of Nanomaterials , 1996 .

[33]  Jean-Marie Tarascon,et al.  Performance of Bellcore's plastic rechargeable Li-ion batteries , 1996 .

[34]  Marc Doyle,et al.  A quick method of measuring the capacity versus discharge rate for a dual lithium-ion insertion cell undergoing cycling , 1994 .

[35]  P. Novák CuO cathode in lithium cells—II. Reduction mechanism of CuO☆ , 1985 .

[36]  P. Novák,et al.  CuO cathode in lithium cells: I. Influence of the decomposition conditions of Cu(OH)2 on the properties of CuO , 1985 .

[37]  J. Goodenough,et al.  Structural characterization of the lithiated iron oxides LixFe3O4 and LixFe2O3 (0 , 1982 .

[38]  M. Thackeray,et al.  A preliminary investigation of the electrochemical performance of α-Fe2O3 and Fe3O4 cathodes in high-temperature cells , 1981 .

[39]  R. Huggins,et al.  Determination of the Kinetic Parameters of Mixed‐Conducting Electrodes and Application to the System Li3Sb , 1977 .