On Quasi‐Newton methods in fast Fourier transform‐based micromechanics [in press]

[1]  Matti Schneider,et al.  An efficient solution scheme for small-strain crystal-elasto-viscoplasticity in a dual framework , 2020 .

[2]  Javier Segurado,et al.  On the accuracy of spectral solvers for micromechanics based fatigue modeling , 2018, Computational Mechanics.

[3]  Marc‐André Keip,et al.  A multiscale FE-FFT framework for electro-active materials at finite strains , 2019, Computational Mechanics.

[4]  J. J. Moré,et al.  Quasi-Newton Methods, Motivation and Theory , 1974 .

[5]  Yousef Saad,et al.  Two classes of multisecant methods for nonlinear acceleration , 2009, Numer. Linear Algebra Appl..

[6]  M. Schneider,et al.  Efficient fixed point and Newton–Krylov solvers for FFT-based homogenization of elasticity at large deformations , 2014 .

[7]  W. Paepegem,et al.  Thermo-mechanical coupling of a viscoelastic-viscoplastic model for thermoplastic polymers: Thermodynamical derivation and experimental assessment , 2019, International Journal of Plasticity.

[8]  A. Hartmaier,et al.  Formulation of nonlocal damage models based on spectral methods for application to complex microstructures , 2015 .

[9]  Steven G. Johnson,et al.  The Design and Implementation of FFTW3 , 2005, Proceedings of the IEEE.

[10]  Shyh-Chin Huang,et al.  Plastic deformation and fracture of binary TiAl-base alloys , 1991 .

[11]  Yunda Dong,et al.  New step lengths in conjugate gradient methods , 2010, Comput. Math. Appl..

[12]  M. Schneider,et al.  FFT‐based homogenization for microstructures discretized by linear hexahedral elements , 2017 .

[13]  V. Eyert A Comparative Study on Methods for Convergence Acceleration of Iterative Vector Sequences , 1996 .

[14]  M. Heilmaier,et al.  Validation of the applicability of a creep model for directionally solidified eutectics with a lamellar microstructure , 2016 .

[15]  S. Raj,et al.  Microstructural characterization of a directionally-solidified Ni–33 (at.%) Al–31Cr–3Mo eutectic alloy as a function of withdrawal rate , 2001 .

[16]  L. Gélébart,et al.  Non-linear extension of FFT-based methods accelerated by conjugate gradients to evaluate the mechanical behavior of composite materials , 2013 .

[17]  H. Bei,et al.  Influence of fiber alignment on creep in directionally solidified NiAl–10Mo in-situ composites , 2013 .

[18]  Laurent Adam,et al.  A second-moment incremental formulation for the mean-field homogenization of elasto-plastic composites , 2011 .

[19]  R. Quey,et al.  Large-scale 3D random polycrystals for the finite element method: Generation, meshing and remeshing , 2011 .

[20]  Carl Tim Kelley,et al.  Numerical methods for nonlinear equations , 2018, Acta Numerica.

[21]  Hervé Moulinec,et al.  A numerical method for computing the overall response of nonlinear composites with complex microstructure , 1998, ArXiv.

[22]  Homer F. Walker,et al.  Choosing the Forcing Terms in an Inexact Newton Method , 1996, SIAM J. Sci. Comput..

[23]  R. Glüge,et al.  The effective stiffness and stress concentrations of a multi-layer laminate , 2014 .

[24]  M. Schneider,et al.  The composite voxel technique for inelastic problems , 2017 .

[25]  Luc Dormieux,et al.  FFT-based methods for the mechanics of composites: A general variational framework , 2010 .

[26]  D. Kochmann,et al.  Predicting the effective response of bulk polycrystalline ferroelectric ceramics via improved spectral phase field methods , 2017 .

[27]  G. Bonnet,et al.  A polarization‐based FFT iterative scheme for computing the effective properties of elastic composites with arbitrary contrast , 2012 .

[28]  R. Ma,et al.  FFT-based homogenization of hypoelastic plasticity at finite strains , 2019, Computer Methods in Applied Mechanics and Engineering.

[29]  Jan Novák,et al.  Accelerating a FFT-based solver for numerical homogenization of periodic media by conjugate gradients , 2010, J. Comput. Phys..

[30]  A. Griewank The local convergence of Broyden-like methods on Lipschitzian problems in Hilbert spaces , 1987 .

[31]  Martin Diehl,et al.  Numerically robust spectral methods for crystal plasticity simulations of heterogeneous materials , 2013 .

[32]  M. Schneider,et al.  Computational homogenization of elasticity on a staggered grid , 2016 .

[33]  Graeme W. Milton,et al.  A fast numerical scheme for computing the response of composites using grid refinement , 1999 .

[34]  S. Nikolov,et al.  DAMASK – The Düsseldorf Advanced Material Simulation Kit for modeling multi-physics crystal plasticity, thermal, and damage phenomena from the single crystal up to the component scale , 2018, Computational Materials Science.

[35]  J. Borwein,et al.  Two-Point Step Size Gradient Methods , 1988 .

[36]  D. Shanno Conditioning of Quasi-Newton Methods for Function Minimization , 1970 .

[37]  J. Nocedal Updating Quasi-Newton Matrices With Limited Storage , 1980 .

[38]  Matti Schneider,et al.  On polarization-based schemes for the FFT-based computational homogenization of inelastic materials , 2019, Computational Mechanics.

[39]  M. Kabel,et al.  Runtime optimization of a memory efficient CG solver for FFT-based homogenization: implementation details and scaling results for linear elasticity , 2019, Computational Mechanics.

[40]  M. Heilmaier,et al.  Creep of binary Fe-Al alloys with ultrafine lamellar microstructures , 2017 .

[41]  J. Hutchinson,et al.  Bounds and self-consistent estimates for creep of polycrystalline materials , 1976, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[42]  L. Dormieux,et al.  Combining Galerkin approximation techniques with the principle of Hashin and Shtrikman to derive a new FFT-based numerical method for the homogenization of composites , 2012 .

[43]  Jorge Nocedal,et al.  On the limited memory BFGS method for large scale optimization , 1989, Math. Program..

[44]  J. Bishop VI. A theoretical examination of the plastic deformation of crystals by glide , 1953 .

[45]  M. Diehl,et al.  A spectral method solution to crystal elasto-viscoplasticity at finite strains , 2013 .

[46]  P. Wolfe Convergence Conditions for Ascent Methods. II , 1969 .

[47]  Andreas Griewank,et al.  Evaluating derivatives - principles and techniques of algorithmic differentiation, Second Edition , 2000, Frontiers in applied mathematics.

[48]  Philip Eisenlohr,et al.  An elasto-viscoplastic formulation based on fast Fourier transforms for the prediction of micromechanical fields in polycrystalline materials , 2012 .

[49]  Yu-Hong Dai,et al.  A perfect example for the BFGS method , 2013, Math. Program..

[50]  M. Schneider,et al.  Mixed boundary conditions for FFT-based homogenization at finite strains , 2016 .

[51]  R. Fletcher,et al.  A New Approach to Variable Metric Algorithms , 1970, Comput. J..

[52]  C. G. Broyden A Class of Methods for Solving Nonlinear Simultaneous Equations , 1965 .

[53]  Felix Fritzen,et al.  Fourier-Accelerated Nodal Solvers (FANS) for homogenization problems , 2018 .

[54]  Pierre Suquet,et al.  On the effective behavior of nonlinear inelastic composites: I. Incremental variational principles , 2007 .

[55]  R. Dembo,et al.  INEXACT NEWTON METHODS , 1982 .

[56]  Yang Chen,et al.  A FFT solver for variational phase-field modeling of brittle fracture , 2019, Computer Methods in Applied Mechanics and Engineering.

[57]  Adnan Eghtesad,et al.  OpenMP and MPI implementations of an elasto-viscoplastic fast Fourier transform-based micromechanical solver for fast crystal plasticity modeling , 2018, Adv. Eng. Softw..

[58]  D. F. Shanno,et al.  Matrix conditioning and nonlinear optimization , 1978, Math. Program..

[59]  M. Heilmaier,et al.  Physically motivated model for creep of directionally solidified eutectics evaluated for the intermetallic NiAl–9Mo , 2016 .

[60]  D. Keyes,et al.  Jacobian-free Newton-Krylov methods: a survey of approaches and applications , 2004 .

[61]  D. Goldfarb A family of variable-metric methods derived by variational means , 1970 .

[62]  C. Sauder,et al.  Analysis of the damage initiation in a SiC/SiC composite tube from a direct comparison between large-scale numerical simulation and synchrotron X-ray micro-computed tomography , 2019, International Journal of Solids and Structures.

[63]  M. Heilmaier,et al.  Orientation relationship of eutectoid FeAl and FeAl2 , 2016, Journal of applied crystallography.

[64]  F. Willot,et al.  Fourier-based schemes for computing the mechanical response of composites with accurate local fields , 2014, 1412.8398.

[65]  G. Strang,et al.  The solution of nonlinear finite element equations , 1979 .

[66]  M. Schneider On the Barzilai‐Borwein basic scheme in FFT‐based computational homogenization , 2019, International Journal for Numerical Methods in Engineering.

[67]  P. Turner,et al.  Variable metric methods in Hilbert space with applications to control problems , 1976 .

[68]  Donald G. M. Anderson Iterative Procedures for Nonlinear Integral Equations , 1965, JACM.

[69]  Leo G. Rebholz,et al.  A Proof That Anderson Acceleration Improves the Convergence Rate in Linearly Converging Fixed-Point Methods (But Not in Those Converging Quadratically) , 2018, SIAM J. Numer. Anal..

[70]  Hervé Moulinec,et al.  A computational scheme for linear and non‐linear composites with arbitrary phase contrast , 2001 .

[71]  Homer F. Walker,et al.  Anderson Acceleration for Fixed-Point Iterations , 2011, SIAM J. Numer. Anal..

[72]  Paul Steinmann,et al.  On the numerical treatment and analysis of finite deformation ductile single crystal plasticity , 1996 .