NiO nanosheets as efficient top hole transporters for carbon counter electrode based perovskite solar cells

Herein, we present fully printable carbon electrode based perovskite solar cells using highly crystalline NiO nanosheets as top hole transport layers, mesoporous TiO2 nanoparticles as a bottom electron transport layer and ZrO2 as an intermediate spacer layer, respectively. Time-resolved photoluminescence decay measurements, electron impedance spectroscopy and transient photovoltage decay measurements have revealed that the NiO nanosheets as top hole transporters exhibit superior charge collection efficiency and a prolonged charge lifetime. As a result, an impressive power conversion efficiency of 14.2% is achieved under standard testing conditions.

[1]  Nakita K. Noel,et al.  Anomalous Hysteresis in Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.

[2]  Seigo Ito,et al.  Effects of Surface Blocking Layer of Sb2S3 on Nanocrystalline TiO2 for CH3NH3PbI3 Perovskite Solar Cells , 2014 .

[3]  Juan Bisquert,et al.  Slow Dynamic Processes in Lead Halide Perovskite Solar Cells. Characteristic Times and Hysteresis. , 2014, The journal of physical chemistry letters.

[4]  Wenjun Zhang,et al.  p-Type mesoscopic NiO as an active interfacial layer for carbon counter electrode based perovskite solar cells. , 2015, Dalton transactions.

[5]  Nam-Gyu Park,et al.  11% Efficient Perovskite Solar Cell Based on ZnO Nanorods: An Effective Charge Collection System , 2014 .

[6]  Qingfeng Dong,et al.  Giant switchable photovoltaic effect in organometal trihalide perovskite devices. , 2015, Nature materials.

[7]  Xizhang Wang,et al.  Porous hierarchical nickel nanostructures and their application as a magnetically separable catalyst , 2012 .

[8]  Teng Zhang,et al.  High-performance hole-extraction layer of sol-gel-processed NiO nanocrystals for inverted planar perovskite solar cells. , 2014, Angewandte Chemie.

[9]  Shahzad Ahmad,et al.  Elucidating Transport-Recombination Mechanisms in Perovskite Solar Cells by Small-Perturbation Techniques , 2014 .

[10]  Fuzhi Huang,et al.  Enhanced open-circuit voltage of p-type DSC with highly crystalline NiO nanoparticles. , 2011, Chemical communications.

[11]  Josef Salbeck,et al.  Low molecular organic glasses for blue electroluminescence , 1997 .

[12]  Satvasheel Powar,et al.  Improved photocurrents for p-type dye-sensitized solar cells using nano-structured nickel(ii) oxide microballs , 2012 .

[13]  M. Green,et al.  The emergence of perovskite solar cells , 2014, Nature Photonics.

[14]  Wei Chen,et al.  Sequential Deposition of CH3NH3PbI3 on Planar NiO Film for Efficient Planar Perovskite Solar Cells , 2014 .

[15]  M. Arisawa,et al.  An orally available, small-molecule interferon inhibits viral replication , 2012, Scientific Reports.

[16]  Sang Il Seok,et al.  High-performance photovoltaic perovskite layers fabricated through intramolecular exchange , 2015, Science.

[17]  Mohammad Khaja Nazeeruddin,et al.  Understanding the rate-dependent J–V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field , 2015 .

[18]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[19]  Feng Huang,et al.  CH₃NH₃PbI₃-based planar solar cells with magnetron-sputtered nickel oxide. , 2014, ACS applied materials & interfaces.

[20]  Lydia Helena Wong,et al.  TiO2 nanotube arrays based flexible perovskite solar cells with transparent carbon nanotube electrode , 2015 .

[21]  Nam-Gyu Park,et al.  Parameters Affecting I-V Hysteresis of CH3NH3PbI3 Perovskite Solar Cells: Effects of Perovskite Crystal Size and Mesoporous TiO2 Layer. , 2014, The journal of physical chemistry letters.

[22]  Linfeng Liu,et al.  Fully printable mesoscopic perovskite solar cells with organic silane self-assembled monolayer. , 2015, Journal of the American Chemical Society.

[23]  M. Grätzel,et al.  A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability , 2014, Science.

[24]  Peng Gao,et al.  Nanowire perovskite solar cell. , 2015, Nano letters.

[25]  Peng Gao,et al.  Impedance spectroscopic analysis of lead iodide perovskite-sensitized solid-state solar cells. , 2014, ACS nano.

[26]  Nripan Mathews,et al.  Laminated carbon nanotube networks for metal electrode-free efficient perovskite solar cells. , 2014, ACS nano.

[27]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[28]  G. Lerario,et al.  Investigating charge dynamics in halide perovskite-sensitized mesostructured solar cells , 2014 .

[29]  M. Grätzel,et al.  Title: Long-Range Balanced Electron and Hole Transport Lengths in Organic-Inorganic CH3NH3PbI3 , 2017 .

[30]  Shihe Yang,et al.  Inkjet printing and instant chemical transformation of a CH3NH3PbI3/nanocarbon electrode and interface for planar perovskite solar cells. , 2014, Angewandte Chemie.

[31]  K. Cao,et al.  Efficient mesoscopic perovskite solar cells based on the CH3NH3PbI2Br light absorber , 2015 .

[32]  Mohammad Khaja Nazeeruddin,et al.  Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency , 2014, Nature Communications.

[33]  Yaoguang Rong,et al.  Full Printable Processed Mesoscopic CH3NH3PbI3/TiO2 Heterojunction Solar Cells with Carbon Counter Electrode , 2013, Scientific Reports.

[34]  Meng Zhang,et al.  Hole selective NiO contact for efficient perovskite solar cells with carbon electrode. , 2015, Nano letters.

[35]  Mohammad Khaja Nazeeruddin,et al.  Outdoor Performance and Stability under Elevated Temperatures and Long‐Term Light Soaking of Triple‐Layer Mesoporous Perovskite Photovoltaics , 2015 .

[36]  Gary Hodes,et al.  Inorganic Hole Conducting Layers for Perovskite-Based Solar Cells. , 2014, The journal of physical chemistry letters.

[37]  Tsutomu Miyasaka,et al.  Emergence of Hysteresis and Transient Ferroelectric Response in Organo-Lead Halide Perovskite Solar Cells. , 2015, The journal of physical chemistry letters.

[38]  Linfeng Liu,et al.  Efficient hole-conductor-free, fully printable mesoscopic perovskite solar cells with a broad light harvester NH2CHNH2PbI3 , 2014 .

[39]  E. Blart,et al.  New photovoltaic devices based on the sensitization of p-type semiconductors: challenges and opportunities. , 2010, Accounts of chemical research.

[40]  Huawei Zhou,et al.  Hole-Conductor-Free, Metal-Electrode-Free TiO2/CH3NH3PbI3 Heterojunction Solar Cells Based on a Low-Temperature Carbon Electrode. , 2014, The journal of physical chemistry letters.

[41]  M. Grätzel,et al.  The influence of charge transport and recombination on the performance of dye-sensitized solar cells. , 2009, Chemphyschem : a European journal of chemical physics and physical chemistry.

[42]  Qingfeng Dong,et al.  Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals , 2015, Science.

[43]  Nripan Mathews,et al.  High efficiency electrospun TiO₂ nanofiber based hybrid organic-inorganic perovskite solar cell. , 2014, Nanoscale.

[44]  Yang Yang,et al.  Under the spotlight: The organic–inorganic hybrid halide perovskite for optoelectronic applications , 2015 .

[45]  Jeffrey A. Christians,et al.  An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide. , 2014, Journal of the American Chemical Society.

[46]  Ming-Hsien Li,et al.  Low-temperature sputtered nickel oxide compact thin film as effective electron blocking layer for mesoscopic NiO/CH3NH3PbI3 perovskite heterojunction solar cells. , 2014, ACS applied materials & interfaces.

[47]  G. Boschloo,et al.  Solid-state perovskite-sensitized p-type mesoporous nickel oxide solar cells. , 2014, ChemSusChem.

[48]  Po-Shen Shen,et al.  Femtosecond excitonic relaxation dynamics of perovskite on mesoporous films of Al₂O₃ and NiO nanoparticles. , 2014, Angewandte Chemie.

[49]  Sergei Tretiak,et al.  High-efficiency solution-processed perovskite solar cells with millimeter-scale grains , 2015, Science.

[50]  Gary Hodes,et al.  Perovskite-Based Solar Cells , 2013, Science.

[51]  Yu-Cheng Chang,et al.  p-type Mesoscopic Nickel Oxide/Organometallic Perovskite Heterojunction Solar Cells , 2014, Scientific Reports.

[52]  Yun-Chorng Chang,et al.  Nickel Oxide Electrode Interlayer in CH3NH3PbI3 Perovskite/PCBM Planar‐Heterojunction Hybrid Solar Cells , 2014, Advanced materials.

[53]  Jianbin Xu,et al.  High-performance graphene-based hole conductor-free perovskite solar cells: Schottky junction enhanced hole extraction and electron blocking. , 2015, Small.

[54]  Jinsong Huang,et al.  Solvent Annealing of Perovskite‐Induced Crystal Growth for Photovoltaic‐Device Efficiency Enhancement , 2014, Advanced materials.

[55]  Ming Li,et al.  Inorganic p-type contact materials for perovskite-based solar cells , 2015 .

[56]  Heng Li,et al.  Hysteresis Analysis Based on the Ferroelectric Effect in Hybrid Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.

[57]  Yao Sun,et al.  Enhancement of perovskite-based solar cells employing core-shell metal nanoparticles. , 2013, Nano letters.

[58]  Ming Cheng,et al.  Structure engineering of hole-conductor free perovskite-based solar cells with low-temperature-processed commercial carbon paste as cathode. , 2014, ACS applied materials & interfaces.

[59]  P. Lund,et al.  Carbon-double-bond-free printed solar cells from TiO₂/CH₃NH₃PbI₃/CuSCN/Au: structural control and photoaging effects. , 2014, Chemphyschem : a European journal of chemical physics and physical chemistry.

[60]  Juan Bisquert,et al.  Mechanism of carrier accumulation in perovskite thin-absorber solar cells , 2013, Nature Communications.