Global quieting of high-frequency seismic noise due to COVID-19 pandemic lockdown measures

Seismic background noise dramatically decreased as a result of lockdown measures in place for mitigating the spread of COVID-19. The great seismic quiet period Noise from trains, airplanes, industrial processes, and other sources is recorded on seismometers worldwide. Disentangling this noise is important for extracting out natural signals, but the noise can also roughly track population movements. Lecocq et al. compiled seismic observations around the world and found a substantial decrease in noise resulting from lockdown measures imposed in response to the coronavirus disease 2019 pandemic (see the Perspective by Denolle and Nissen-Meyer). These observations tightly correspond to when the measures went into effect and offer a way to track aggregate behavior. This quiet period also offers the chance to extract anthropogenic sources of noise from those of natural processes. Science, this issue p. 1338; see also p. 1299 Human activity causes vibrations that propagate into the ground as high-frequency seismic waves. Measures to mitigate the coronavirus disease 2019 (COVID-19) pandemic caused widespread changes in human activity, leading to a months-long reduction in seismic noise of up to 50%. The 2020 seismic noise quiet period is the longest and most prominent global anthropogenic seismic noise reduction on record. Although the reduction is strongest at surface seismometers in populated areas, this seismic quiescence extends for many kilometers radially and hundreds of meters in depth. This quiet period provides an opportunity to detect subtle signals from subsurface seismic sources that would have been concealed in noisier times and to benchmark sources of anthropogenic noise. A strong correlation between seismic noise and independent measurements of human mobility suggests that seismology provides an absolute, real-time estimate of human activities.

Louis Moresi | Steven J. Gibbons | Stephen P. Hicks | Mathijs R. Koymans | Reinoud Sleeman | Kasper van Wijk | Meghan S. Miller | Stefanie Donner | György Hetényi | Marc Grunberg | Eric Larose | Andrea Cannata | Shahar Shani-Kadmiel | Läslo Evers | Adolfo Inza | Thomas Lecocq | Efthimios Sokos | Joachim Wassermann | Flavio Cannavo | Paula Koelemeijer | Alexander E. Stott | Dimitrios Giannopoulos | Adrien Oth | Mathilde B. Sørensen | Tobias Megies | Claudio Satriano | Jerome Vergne | Nathaniel J. Lindsey | David G. Cornwell | Bogdan Grecu | Martha K. Savage | Shankho Niyogi | Taka'aki Taira | Sebastian Carrasco | Corentin Caudron | Shiba Subedi | Klaus Stammler | Fatih Turhan | Olivier F. C. den Ouden | Jelle D. Assink | Esteban J. Chaves | Gregor Hillers | William Minarik | Simon Proud | Christos P. Evangelidis | Anna Horleston | Társilo Girona | S. Gibbons | S. Proud | C. Satriano | T. Megies | A. Cannata | F. Massin | T. Taira | J. Assink | L. Evers | E. Sokos | A. Oth | A. Kafka | Jérôme Vergne | Louis Moresi | T. Warren | C. Evangelidis | S. Carrasco | K. van Wijk | J. Wassermann | G. Hillers | J. Díaz | B. Grecu | É. Larose | P. Koelemeijer | T. Lecocq | T. Vuorinen | V. Márquez-Ramírez | M. Savage | N. Lindsey | J. Pulli | M. Tapia | Koen Van Noten | S. Shani-Kadmiel | R. Anthony | C. Caudron | M. Miller | S. Donner | Koen Van Noten | Raphael S. M. De Plaen | Frédérick Massin | Robert E. Anthony | Maria-Theresia Apoloner | Mario Arroyo-Solórzano | Pinar Büyükakpınar | David Craig | Jordi Diaz | Benoit Fauville | Gonzalo A. Fernandez | Jessica C. E. Irving | Mohammadreza Jamalreyhani | Alan Kafka | Celeste R. Labedz | Mika McKinnon | Víctor H. Márquez-Ramírez | Martin Möllhoff | Ian M. Nesbitt | Javier Ojeda | Jay Pulli | Lise Retailleau | Annukka E. Rintamäki | Mar Tapia | Ben van der Pluijm | Mark Vanstone | Tommi A. T. Vuorinen | Tristram Warren | Han Xiao | D. Cornwell | I. Nesbitt | F. Turhan | M. Möllhoff | Maria-Theresia Apoloner | A. Horleston | A. Stott | G. Hetényi | M. Sørensen | F. Cannavò | T. Girona | J. Irving | Benoît Fauville | D. Giannopoulos | A. Inza | K. Stammler | S. Hicks | E. J. Chaves | M. Grunberg | R. Sleeman | S. Subedi | M. Koymans | L. Retailleau | David Craig | Mohammadreza Jamalreyhani | Pınar Büyükakpınar | Mario Arroyo-Solórzano | William Minarik | Han Xiao | B. A. van der Pluijm | J. Ojeda | G. Fernandez | C. Labedz | Mika McKinnon | Shankho Niyogi | Mark Vanstone | M. Miller | P. Büyükakpınar | W. Minarik | E. Chaves | Jordi Díaz

[1]  R. Agha,et al.  World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19) , 2020, International Journal of Surgery.

[2]  P. Gerstoft,et al.  The seismic traffic footprint: Tracking trains, aircraft, and cars seismically , 2015 .

[3]  L. Wotherspoon,et al.  Analysis of Anthropogenic and Natural Noise from Multilevel Borehole Seismometers in an Urban Environment, Auckland, New Zealand , 2015 .

[4]  G. Pazour,et al.  Ror2 signaling regulates Golgi structure and transport through IFT20 for tumor invasiveness , 2017, Scientific Reports.

[5]  J. W. Tukey,et al.  The Measurement of Power Spectra from the Point of View of Communications Engineering , 1958 .

[6]  Y. Ben‐Zion,et al.  Train Traffic as a Powerful Noise Source for Monitoring Active Faults With Seismic Interferometry , 2019, Geophysical research letters.

[7]  Lion Krischer,et al.  ObsPy: a bridge for seismology into the scientific Python ecosystem , 2015 .

[8]  M. Agha,et al.  Evidence based management guideline for the COVID-19 pandemic - Review article , 2020, International Journal of Surgery.

[9]  Ben Dashwood,et al.  Characterizing broadband seismic noise in Central London , 2017 .

[10]  Thomas Jahr,et al.  On reduction of long-period horizontal seismic noise using local barometric pressure , 2007 .

[11]  Jörn Christoffer Groos,et al.  Time domain classification and quantification of seismic noise in an urban environment , 2009 .

[12]  A. Vespignani,et al.  Changes in contact patterns shape the dynamics of the COVID-19 outbreak in China , 2020, Science.

[13]  P. Roux,et al.  Anatomy of the high-frequency ambient seismic wave field at the TCDP borehole , 2012 .

[14]  Craig Miller,et al.  Monitoring seismic precursors to an eruption from the Auckland Volcanic Field, New Zealand , 2007 .

[15]  David C. Wilson,et al.  Do Low‐Cost Seismographs Perform Well Enough for Your Network? An Overview of Laboratory Tests and Field Observations of the OSOP Raspberry Shake 4D , 2018, Seismological Research Letters.

[16]  Egill Hauksson,et al.  Searching for hidden earthquakes in Southern California , 2019, Science.

[17]  E. Cochran To catch a quake , 2018, Nature Communications.

[18]  Robert K. Cessaro,et al.  Sources of primary and secondary microseisms , 1994, Bulletin of the Seismological Society of America.

[19]  Fédération française de la randonnée pédestre. Éditeur scientifique La Catalogne... à pied : 22 promenades & randonnées (Éd. 1) FFRandonnée ; cartographie Institut Cartogràfic i Geològic de Catalunya , 2016 .

[20]  B. Biondi,et al.  City‐Scale Dark Fiber DAS Measurements of Infrastructure Use During the COVID‐19 Pandemic , 2020, Geophysical research letters.

[21]  Yaliang Li,et al.  SCI , 2021, Proceedings of the 30th ACM International Conference on Information & Knowledge Management.

[22]  Craig Miller,et al.  Some challenges of monitoring a potentially active volcanic field in a large urban area: Auckland volcanic field, New Zealand , 2011 .

[23]  Dino Bindi,et al.  Characterization of shallow geology by high‐frequency seismic noise tomography , 2009 .

[24]  Chen Ji,et al.  COVID-19 Societal Response Captured by Seismic Noise in China and Italy , 2020, Seismological Research Letters.

[25]  Daniel E. McNamara,et al.  Ambient Noise Levels in the Continental United States , 2004 .

[26]  T. Laing,et al.  The economic impact of the Coronavirus 2019 (Covid-2019): Implications for the mining industry , 2020, The Extractive Industries and Society.

[27]  Simon Richard Proud Go-Around Detection Using Crowd-Sourced ADS-B Position Data , 2020 .

[28]  P. Denton,et al.  Seismology at School in Nepal: A Program for Educational and Citizen Seismology Through a Low-Cost Seismic Network , 2020, Frontiers in Earth Science.

[29]  Jessica T Davis,et al.  The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak , 2020, Science.

[30]  B. Gutenberg,et al.  Frequency of Earthquakes in California , 1944, Nature.

[31]  Kenneth Duru,et al.  seismo‐live: An Educational Online Library of Jupyter Notebooks for Seismology , 2018, Seismological Research Letters.

[32]  David C. Wilson,et al.  Broadband Seismic Background Noise at Temporary Seismic Stations Observed on a Regional Scale in the Southwestern United States , 2002 .

[33]  Birgit Schmidt,et al.  Positioning and Power in Academic Publishing: Players, Agents and Agendas, 20th International Conference on Electronic Publishing, Göttingen, Germany, June 7-9, 2016 , 2016, ELPUB.

[34]  Daniel E. McNamara,et al.  PQLX; a seismic data quality control system description, applications, and users manual , 2011 .

[35]  J. Schmittbuhl,et al.  Characterization of ambient seismic noise near a deep geothermal reservoir and implications for interferometric methods: a case study in northern Alsace, France , 2015, Geothermal Energy.

[36]  P. Welch The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms , 1967 .

[37]  J. Veefkind,et al.  Impact of Coronavirus Outbreak on NO2 Pollution Assessed Using TROPOMI and OMI Observations , 2020, Geophysical research letters.

[38]  Nuno R. Faria,et al.  The effect of human mobility and control measures on the COVID-19 epidemic in China , 2020, Science.

[39]  Abu Bakar Abdul Hamid,et al.  The Effect of Coronavirus (COVID-19) in the Tourism Industry in China , 2020 .

[40]  Agata Mikolajczyk,et al.  The positive impact of lockdown in Wuhan on containing the COVID-19 outbreak in China , 2020, Journal of travel medicine.

[41]  Lion Krischer,et al.  ObsPy: A Python Toolbox for Seismology , 2010 .

[42]  Michel Campillo,et al.  Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise , 2004 .

[43]  J. Díaz,et al.  Urban Seismology: on the origin of earth vibrations within a city , 2017, Scientific Reports.

[44]  Jack Oliver,et al.  The Seismic Noise of the Earth’s Surface , 1959 .

[45]  T. Hollingsworth,et al.  How will country-based mitigation measures influence the course of the COVID-19 epidemic? , 2020, The Lancet.

[46]  Irene Molinari,et al.  The 2020 coronavirus lockdown and seismic monitoring of anthropic activities in Northern Italy , 2020, Scientific Reports.

[48]  Lion Krischer,et al.  ObsPy – What can it do for data centers and observatories? , 2011 .

[49]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[50]  G. Mccall Geohazards and the urban environment , 1998, Geological Society, London, Engineering Geology Special Publications.

[51]  Ruifu Yang,et al.  An investigation of transmission control measures during the first 50 days of the COVID-19 epidemic in China , 2020, Science.

[52]  Desianto F. Wibisono,et al.  Rapid collaborative knowledge building via Twitter after significant geohazard events , 2019, Geoscience Communication.