The development of model fitting and completion program for automated iterative nucleic acid refinement

Over the past decade, many nucleic acid structures have been determined, which have contributed to our understanding of their biological functions. However, the crystals containing nucleic acid often poorly diffract X-rays. This makes electron density interpretation difficult and requires a great deal of expertise in crystallography and knowledge of nucleic acid structure. Here, new programs called NAFIT and NABUILD for fitting and extending nucleic acid models are presented. These programs can be used as modules for the automated refinement system, LAFIRE, as well as acting as independent programs. NAFIT performs sequential grouped fitting with empirical torsion angle restraints and anti-bumping restraints including hydrogen atoms. NABUILD extends the model using a skeletonized map in a coarse-grained manner. It was shown that NAFIT greatly improved electron density fit and geometric quality and NABUILD with iterative refinement significantly reduced Rfree factor.

[1]  R. Fisher THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS , 1936 .

[2]  P. Zwart,et al.  Towards automated crystallographic structure refinement with phenix.refine , 2012, Acta crystallographica. Section D, Biological crystallography.

[3]  Karl Pearson F.R.S. LIII. On lines and planes of closest fit to systems of points in space , 1901 .

[4]  Anna Marie Pyle,et al.  RCrane: semi-automated RNA model building , 2012, Acta crystallographica. Section D, Biological crystallography.

[5]  P. Main,et al.  A theoretical comparison of the ,?' and 2FoFc syntheses , 1979 .

[6]  Anna Marie Pyle,et al.  Semiautomated model building for RNA crystallography using a directed rotameric approach , 2010, Proceedings of the National Academy of Sciences.

[7]  P. Moore,et al.  The crystal structure of yeast phenylalanine tRNA at 1.93 A resolution: a classic structure revisited. , 2000, RNA.

[8]  A. Brünger Free R value: a novel statistical quantity for assessing the accuracy of crystal structures , 1992, Nature.

[9]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[10]  G J Kleywegt,et al.  Phi/psi-chology: Ramachandran revisited. , 1996, Structure.

[11]  V. Lunin,et al.  R-free likelihood-based estimates of errors for phases calculated from atomic models , 1995 .

[12]  R. Batey,et al.  The structure of a tetrahydrofolate-sensing riboswitch reveals two ligand binding sites in a single aptamer. , 2011, Structure.

[13]  D. Baker,et al.  Atomic accuracy in predicting and designing non-canonical RNA structure , 2010, Nature Methods.

[14]  A. Brunger Version 1.2 of the Crystallography and NMR system , 2007, Nature Protocols.

[15]  I. Tanaka,et al.  New algorithm for protein model building : extending a partial model in a map segment , 2006 .

[16]  E. Lattman,et al.  Representation of phase probability distributions for simplified combination of independent phase information , 1970 .

[17]  Jack Snoeyink,et al.  RNABC: forward kinematics to reduce all-atom steric clashes in RNA backbone , 2007, Journal of mathematical biology.

[18]  Axel T. Brunger,et al.  Model bias in macromolecular crystal structures , 1992 .

[19]  Challenges and surprises that arise with nucleic acids during model building and refinement , 2012, Acta crystallographica. Section D, Biological crystallography.

[20]  Vincent B. Chen,et al.  Correspondence e-mail: , 2000 .

[21]  J. Karle Some developments in anomalous dispersion for the structural investigation of macromolecular systems in biology , 2009 .

[22]  A T Brünger,et al.  Protein hydration observed by X-ray diffraction. Solvation properties of penicillopepsin and neuraminidase crystal structures. , 1994, Journal of molecular biology.

[23]  R. Read,et al.  Improved Structure Refinement Through Maximum Likelihood , 1996 .

[24]  G. Bricogne,et al.  Refinement of severely incomplete structures with maximum likelihood in BUSTER-TNT. , 2004, Acta crystallographica. Section D, Biological crystallography.

[25]  V Y Lunin,et al.  Likelihood-based refinement. I. Irremovable model errors. , 2002, Acta crystallographica. Section A, Foundations of crystallography.

[26]  Fei Long,et al.  Low-resolution refinement tools in REFMAC5 , 2012, Acta crystallographica. Section D, Biological crystallography.

[27]  M. Zalis,et al.  Visualizing and quantifying molecular goodness-of-fit: small-probe contact dots with explicit hydrogen atoms. , 1999, Journal of molecular biology.

[28]  I. Tanaka,et al.  Snapshots of dynamics in synthesizing N(6)-isopentenyladenosine at the tRNA anticodon. , 2009, Biochemistry.

[29]  Rhiju Das,et al.  An enumerative stepwise ansatz enables atomic-accuracy RNA loop modeling , 2011, Proceedings of the National Academy of Sciences.

[30]  N. Pannu,et al.  REFMAC5 for the refinement of macromolecular crystal structures , 2011, Acta crystallographica. Section D, Biological crystallography.

[31]  B. C. Wang Resolution of phase ambiguity in macromolecular crystallography. , 1985, Methods in enzymology.

[32]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[33]  Axel T. Brunger,et al.  Phase Improvement by Multi-Start Simulated Annealing Refinement and Structure-Factor Averaging , 1998 .

[34]  M. Perutz,et al.  The structure of haemoglobin - IV. Sign determination by the isomorphous replacement method , 1954, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[35]  Rhiju Das,et al.  Correcting pervasive errors in RNA crystallography through enumerative structure prediction , 2011, Nature Methods.

[36]  Randy J. Read,et al.  Iterative-build OMIT maps: map improvement by iterative model building and refinement without model bias , 2008, Acta crystallographica. Section D, Biological crystallography.

[37]  S. Phillips,et al.  Structure and refinement of oxymyoglobin at 1.6 A resolution. , 1980, Journal of molecular biology.

[38]  Application of constrained real‐space refinement of flexible molecular fragments to automatic model building of RNA structures , 2012 .

[39]  D. Blow,et al.  The detection of sub‐units within the crystallographic asymmetric unit , 1962 .

[40]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[41]  A. Serganov,et al.  Structural insights into amino acid binding and gene control by a lysine riboswitch , 2008, Nature.

[42]  P. Adams,et al.  Electronic Reprint Biological Crystallography a Robust Bulk-solvent Correction and Anisotropic Scaling Procedure Afonine Et Al. ¯ Bulk-solvent Correction and Anisotropic Scaling Biological Crystallography a Robust Bulk-solvent Correction and Anisotropic Scaling Procedure , 2004 .

[43]  G. Kleywegt,et al.  Checking your imagination: applications of the free R value. , 1996, Structure.

[44]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[45]  J. Konnert,et al.  A restrained-parameter structure-factor least-squares refinement procedure for large asymmetric units , 1976 .

[46]  Randy J. Read,et al.  Dauter Iterative model building , structure refinement and density modification with the PHENIX AutoBuild wizard , 2007 .

[47]  Jack Snoeyink,et al.  Nucleic Acids Research Advance Access published April 22, 2007 MolProbity: all-atom contacts and structure validation for proteins and nucleic acids , 2007 .

[48]  Anna Marie Pyle,et al.  Crystal Structure of a Self-Spliced Group II Intron , 2008, Science.

[49]  Randy J. Read,et al.  A New Generation of Crystallographic Validation Tools for the Protein Data Bank , 2011, Structure.

[50]  Paul D. Adams,et al.  Use of knowledge-based restraints in phenix.refine to improve macromolecular refinement at low resolution , 2012, Acta crystallographica. Section D, Biological crystallography.

[51]  R. Read,et al.  Cross-validated maximum likelihood enhances crystallographic simulated annealing refinement. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[52]  B. Schneider,et al.  Building of RNA and DNA double helices into electron density. , 2008, Acta crystallographica. Section D, Biological crystallography.

[53]  G N Murshudov,et al.  Incorporation of prior phase information strengthens maximum-likelihood structure refinement. , 1998, Acta crystallographica. Section D, Biological crystallography.

[54]  R. Kretsinger,et al.  Refinement of the structure of carp muscle calcium-binding parvalbumin by model building and difference Fourier analysis. , 1976, Journal of molecular biology.

[55]  R. Batey,et al.  Crystal Structure of the Lysine Riboswitch Regulatory mRNA Element* , 2008, Journal of Biological Chemistry.

[56]  Helen M Berman,et al.  RNA backbone: consensus all-angle conformers and modular string nomenclature (an RNA Ontology Consortium contribution). , 2008, RNA.

[57]  Wayne A. Hendrickson,et al.  Structure of the hydrophobic protein crambin determined directly from the anomalous scattering of sulphur , 1981, Nature.

[58]  Thomas C Terwilliger,et al.  Using prime-and-switch phasing to reduce model bias in molecular replacement. , 2004, Acta crystallographica. Section D, Biological crystallography.

[59]  Thomas A Steitz,et al.  Structural insights into the roles of water and the 2' hydroxyl of the P site tRNA in the peptidyl transferase reaction. , 2005, Molecular cell.

[60]  Clemens Vonrhein,et al.  Exploiting structure similarity in refinement: automated NCS and target-structure restraints in BUSTER , 2012, Acta crystallographica. Section D, Biological crystallography.

[61]  G. Murshudov,et al.  Refinement of macromolecular structures by the maximum-likelihood method. , 1997, Acta crystallographica. Section D, Biological crystallography.

[62]  Peter Main,et al.  Histogram matching as a new density modification technique for phase refinement and extension of protein molecules , 1990 .

[63]  A.J.C. Wilson,et al.  Largest likely values for the reliability index , 1950 .

[64]  V. Lamzin,et al.  Pattern-recognition-based detection of planar objects in three-dimensional electron-density maps. , 2008, Acta crystallographica. Section D, Biological crystallography.

[65]  R. Read Improved Fourier Coefficients for Maps Using Phases from Partial Structures with Errors , 1986 .

[66]  M. E. Galassi,et al.  GNU SCIENTI C LIBRARY REFERENCE MANUAL , 2005 .

[67]  Adam Godzik,et al.  The JCSG MR pipeline: optimized alignments, multiple models and parallel searches , 2007, Acta crystallographica. Section D, Biological crystallography.

[68]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[69]  Shigeyuki Yokoyama,et al.  ATP binding by glutamyl‐tRNA synthetase is switched to the productive mode by tRNA binding , 2003, The EMBO journal.

[70]  Hiroshi Murakami,et al.  Structural basis of specific tRNA aminoacylation by a small in vitro selected ribozyme , 2008, Nature.

[71]  Yong Zhou,et al.  LAFIRE: software for automating the refinement process of protein-structure analysis. , 2006, Acta crystallographica. Section D, Biological crystallography.

[72]  W. Hendrickson Determination of macromolecular structures from anomalous diffraction of synchrotron radiation. , 1991, Science.

[73]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[74]  Paul D. Adams,et al.  Averaged kick maps: less noise, more signal…and probably less bias , 2009, Acta crystallographica. Section D, Biological crystallography.