Measuring Brain Variability Via Sulcal Lines Registration: A Diffeomorphic Approach

In this paper we present a new way of measuring brain variability based on the registration of sulcal lines sets in the large deformation framework. Lines are modelled geometrically as currents, avoiding then matchings based on point correspondences. At the end we retrieve a globally consistent deformation of the underlying brain space that best matches the lines. Thanks to this framework the measured variability is defined everywhere whereas a previous method introduced by P. Fillard requires tensors extrapolation. Evaluating both methods on the same database, we show that our new approach enables to describe different details of the variability and to highlight the major trends of deformation in the database thanks to a Tangent-PCA analysis.

[1]  Stephen R. Marsland,et al.  Constructing diffeomorphic representations for the groupwise analysis of nonrigid registrations of medical images , 2004, IEEE Transactions on Medical Imaging.

[2]  Stephen R. Marsland,et al.  Constructing Diffeomorphic Representations of Non-rigid Registrations of Medical Images , 2003, IPMI.

[3]  N. Aronszajn Theory of Reproducing Kernels. , 1950 .

[4]  P. Thompson,et al.  Evaluating Brain Anatomical Correlations via Canonical Correlation Analysis of Sulcal Lines , 2007 .

[5]  Xavier Pennec,et al.  A Riemannian Framework for Tensor Computing , 2005, International Journal of Computer Vision.

[6]  S. Joshi,et al.  Template estimation form unlabeled point set data and surfaces for Computational Anatomy , 2006 .

[7]  Joan Alexis Glaunès Transport par difféomorphismes de points, de mesures et de courants pour la comparaison de formes et l'anatomie numérique , 2005 .

[8]  L. Younes,et al.  Statistics on diffeomorphisms via tangent space representations , 2004, NeuroImage.

[9]  Anand Rangarajan,et al.  A new point matching algorithm for non-rigid registration , 2003, Comput. Vis. Image Underst..

[10]  Joan Alexis Glaunès,et al.  Surface Matching via Currents , 2005, IPMI.

[11]  Alan C. Evans,et al.  A Unified Statistical Approach to Deformation-Based Morphometry , 2001, NeuroImage.

[12]  N. Ayache,et al.  Log‐Euclidean metrics for fast and simple calculus on diffusion tensors , 2006, Magnetic resonance in medicine.

[13]  Karl J. Friston,et al.  Identifying global anatomical differences: Deformation‐based morphometry , 1998 .

[14]  Alain Trouvé,et al.  Geodesic Shooting for Computational Anatomy , 2006, Journal of Mathematical Imaging and Vision.

[15]  D. Louis Collins,et al.  Object-based morphometry of the cerebral cortex , 2004, IEEE Transactions on Medical Imaging.

[16]  Andreas A. Ioannides,et al.  Consistent and precise localization of brain activity in human primary visual cortex by MEG and fMRI , 2003, NeuroImage.

[17]  Michael I. Miller,et al.  Diffeomorphic metric surface mapping in subregion of the superior temporal gyrus , 2007, NeuroImage.

[18]  Paul M. Thompson,et al.  Measuring brain variability by extrapolating sparse tensor fields measured on sulcal lines , 2007, NeuroImage.