Digital Waveguide Modeling for Wind Instruments: Building a State–Space Representation Based on the Webster–Lokshin Model
暂无分享,去创建一个
[1] Stephan Tassart,et al. State Space Sound Synthesis and a State Space Sythensiser Builder , 1995, ICMC.
[2] A. Fettweis. Wave digital filters: Theory and practice , 1986, Proceedings of the IEEE.
[3] Jean Kergomard,et al. On the reflection functions associated with discontinuities in conical bores , 1990 .
[4] Julius O. Smith,et al. Music applications of digital waveguides , 1987 .
[5] Gary P. Scavone,et al. An Acoustic Analysis Of Single-Reed Woodwind Instruments With An Emphasis On Design And Performance Issues And Digital Waveguide Modeling Techniques , 1997 .
[6] D. Matignon,et al. Stable realization of a delay system modeling a convergent acoustic cone , 2008, 2008 16th Mediterranean Conference on Control and Automation.
[7] Stefan Bilbao,et al. Wave and Scattering Methods for Numerical Simulation , 2004 .
[8] A. Gray,et al. On autocorrelation equations as applied to speech analysis , 1973 .
[9] Thierry Voinier,et al. Real-time synthesis of clarinet-like instruments using digital impedance models. , 2005, The Journal of the Acoustical Society of America.
[10] Vesa V Alim Aki. Discrete-Time Modeling of Acoustic Tubes Using Fractional Delay Filters , 1995 .
[11] D. Matignon. Representations en variables d'etat de modeles de guides d'ondes avec derivation fractionnaire , 1994 .
[12] Gene F. Franklin,et al. Digital control of dynamic systems , 1980 .
[13] A G Webster,et al. Acoustical Impedance and the Theory of Horns and of the Phonograph. , 1919, Proceedings of the National Academy of Sciences of the United States of America.
[14] Stephan Tassart. Modelisation, simulation et analyse des instruments a vent avec retards fractionnaires , 1999 .
[15] Peter B. Johns,et al. Numerical solution of 2-dimensional scattering problems using a transmission-line matrix , 1971 .
[16] D. Matignon. Stability properties for generalized fractional differential systems , 1998 .
[17] Olof J. Staffans. Well-posedness and stabilizability of a viscoelastic equation in energy space , 1994 .
[18] J. Agulló,et al. Conical bores. Part I: Reflection functions associated with discontinuities , 1988 .
[19] Vesa Vlimki,et al. Discrete-Time Modeling of Acoustic Tubes Using Fractional Delay Filters , 1998 .
[20] Gérard Montseny,et al. Diffusive representation of pseudo-differential time-operators , 1998 .
[21] David P. Berners,et al. Acoustics and signal processing techniques for physical modeling of brass instruments , 1999 .
[22] Denis Matignon,et al. DIFFUSIVE REPRESENTATIONS FOR THE ANALYSIS AND SIMULATION OF FLARED ACOUSTIC PIPES WITH VISCO-THERMAL LOSSES , 2006 .
[23] Denis Matignon. PHYSICAL MODELLING OF MUSICAL INSTRUMENTS : analysis-synthesis by means of state space representations , 1995 .
[24] Murray Campbell,et al. Discrete-time modeling of woodwind instrument bores using wave variables. , 2003, The Journal of the Acoustical Society of America.
[25] Denis Matignon,et al. Waveguide Modeling of Lossy Flared Acoustic Pipes: Derivation of a Kelly-Lochbaum Structure for Real-Time Simulations , 2007, 2007 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics.
[26] Maarten van Walstijn,et al. Discrete-time modelling of brass and reed woodwind instruments with application to musical sound synthesis , 2002 .
[27] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[28] M. van Walstijn. Wave-based Simulation of Wind Instrument Resonators , 2007, IEEE Signal Processing Magazine.
[29] Denis Matignon,et al. Representations with poles and cuts for the time-domain simulation of fractional systems and irrational transfer functions , 2006, Signal Process..
[30] S. Bilbao. Wave and Scattering Methods for Numerical Simulation , 2004 .
[31] Eric Ducasse. Modélisation et simulation dans le domaine temporel d'instruments à vent à anche simple en situation de jeu : méthodes et modèles , 2001 .
[32] Thomas Hélie,et al. Unidimensional models of acoustic propagation in axisymmetric waveguides. , 2003, The Journal of the Acoustical Society of America.
[33] Julius O. Smith,et al. Principles of Digital Waveguide Models of Musical Instruments , 2002 .
[34] N. Fletcher,et al. Music Producers.(Book Reviews: The Physics of Musical Instruments.) , 1991 .
[35] Eric Ducasse,et al. An alternative to the traveling-wave approach for use in two-port descriptions of acoustic bores. , 2002, The Journal of the Acoustical Society of America.
[36] Christophe Vergez,et al. Trompette et trompettiste : un systeme dynamique non lineaire a analyser, modeliser et simuler dans un contexte musical , 2000 .
[37] R E Kalman,et al. CANONICAL STRUCTURE OF LINEAR DYNAMICAL SYSTEMS. , 1962, Proceedings of the National Academy of Sciences of the United States of America.
[38] Xavier Rodet,et al. Radiation of a pulsating portion of a sphere: application to horn radiation , 2003 .