Digital Waveguide Modeling for Wind Instruments: Building a State–Space Representation Based on the Webster–Lokshin Model

This paper deals with digital waveguide modeling of wind instruments. It presents the application of state-space representations for the refined acoustic model of Webster-Lokshin. This acoustic model describes the propagation of longitudinal waves in axisymmetric acoustic pipes with a varying cross-section, visco-thermal losses at the walls, and without assuming planar or spherical waves. Moreover, three types of discontinuities of the shape can be taken into account (radius, slope, and curvature). The purpose of this work is to build low-cost digital simulations in the time domain based on the Webster-Lokshin model. First, decomposing a resonator into independent elementary parts and isolating delay operators lead to a Kelly-Lochbaum network of input/output systems and delays. Second, for a systematic assembling of elements, their state-space representations are derived in discrete time. Then, standard tools of automatic control are used to reduce the complexity of digital simulations in the time domain. The method is applied to a real trombone, and results of simulations are presented and compared with measurements. This method seems to be a promising approach in term of modularity, complexity of calculation, and accuracy, for any acoustic resonators based on tubes.

[1]  Stephan Tassart,et al.  State Space Sound Synthesis and a State Space Sythensiser Builder , 1995, ICMC.

[2]  A. Fettweis Wave digital filters: Theory and practice , 1986, Proceedings of the IEEE.

[3]  Jean Kergomard,et al.  On the reflection functions associated with discontinuities in conical bores , 1990 .

[4]  Julius O. Smith,et al.  Music applications of digital waveguides , 1987 .

[5]  Gary P. Scavone,et al.  An Acoustic Analysis Of Single-Reed Woodwind Instruments With An Emphasis On Design And Performance Issues And Digital Waveguide Modeling Techniques , 1997 .

[6]  D. Matignon,et al.  Stable realization of a delay system modeling a convergent acoustic cone , 2008, 2008 16th Mediterranean Conference on Control and Automation.

[7]  Stefan Bilbao,et al.  Wave and Scattering Methods for Numerical Simulation , 2004 .

[8]  A. Gray,et al.  On autocorrelation equations as applied to speech analysis , 1973 .

[9]  Thierry Voinier,et al.  Real-time synthesis of clarinet-like instruments using digital impedance models. , 2005, The Journal of the Acoustical Society of America.

[10]  Vesa V Alim Aki Discrete-Time Modeling of Acoustic Tubes Using Fractional Delay Filters , 1995 .

[11]  D. Matignon Representations en variables d'etat de modeles de guides d'ondes avec derivation fractionnaire , 1994 .

[12]  Gene F. Franklin,et al.  Digital control of dynamic systems , 1980 .

[13]  A G Webster,et al.  Acoustical Impedance and the Theory of Horns and of the Phonograph. , 1919, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Stephan Tassart Modelisation, simulation et analyse des instruments a vent avec retards fractionnaires , 1999 .

[15]  Peter B. Johns,et al.  Numerical solution of 2-dimensional scattering problems using a transmission-line matrix , 1971 .

[16]  D. Matignon Stability properties for generalized fractional differential systems , 1998 .

[17]  Olof J. Staffans Well-posedness and stabilizability of a viscoelastic equation in energy space , 1994 .

[18]  J. Agulló,et al.  Conical bores. Part I: Reflection functions associated with discontinuities , 1988 .

[19]  Vesa Vlimki,et al.  Discrete-Time Modeling of Acoustic Tubes Using Fractional Delay Filters , 1998 .

[20]  Gérard Montseny,et al.  Diffusive representation of pseudo-differential time-operators , 1998 .

[21]  David P. Berners,et al.  Acoustics and signal processing techniques for physical modeling of brass instruments , 1999 .

[22]  Denis Matignon,et al.  DIFFUSIVE REPRESENTATIONS FOR THE ANALYSIS AND SIMULATION OF FLARED ACOUSTIC PIPES WITH VISCO-THERMAL LOSSES , 2006 .

[23]  Denis Matignon PHYSICAL MODELLING OF MUSICAL INSTRUMENTS : analysis-synthesis by means of state space representations , 1995 .

[24]  Murray Campbell,et al.  Discrete-time modeling of woodwind instrument bores using wave variables. , 2003, The Journal of the Acoustical Society of America.

[25]  Denis Matignon,et al.  Waveguide Modeling of Lossy Flared Acoustic Pipes: Derivation of a Kelly-Lochbaum Structure for Real-Time Simulations , 2007, 2007 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics.

[26]  Maarten van Walstijn,et al.  Discrete-time modelling of brass and reed woodwind instruments with application to musical sound synthesis , 2002 .

[27]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[28]  M. van Walstijn Wave-based Simulation of Wind Instrument Resonators , 2007, IEEE Signal Processing Magazine.

[29]  Denis Matignon,et al.  Representations with poles and cuts for the time-domain simulation of fractional systems and irrational transfer functions , 2006, Signal Process..

[30]  S. Bilbao Wave and Scattering Methods for Numerical Simulation , 2004 .

[31]  Eric Ducasse Modélisation et simulation dans le domaine temporel d'instruments à vent à anche simple en situation de jeu : méthodes et modèles , 2001 .

[32]  Thomas Hélie,et al.  Unidimensional models of acoustic propagation in axisymmetric waveguides. , 2003, The Journal of the Acoustical Society of America.

[33]  Julius O. Smith,et al.  Principles of Digital Waveguide Models of Musical Instruments , 2002 .

[34]  N. Fletcher,et al.  Music Producers.(Book Reviews: The Physics of Musical Instruments.) , 1991 .

[35]  Eric Ducasse,et al.  An alternative to the traveling-wave approach for use in two-port descriptions of acoustic bores. , 2002, The Journal of the Acoustical Society of America.

[36]  Christophe Vergez,et al.  Trompette et trompettiste : un systeme dynamique non lineaire a analyser, modeliser et simuler dans un contexte musical , 2000 .

[37]  R E Kalman,et al.  CANONICAL STRUCTURE OF LINEAR DYNAMICAL SYSTEMS. , 1962, Proceedings of the National Academy of Sciences of the United States of America.

[38]  Xavier Rodet,et al.  Radiation of a pulsating portion of a sphere: application to horn radiation , 2003 .