On the successive supersymmetric rank‐1 decomposition of higher‐order supersymmetric tensors

SUMMARY In this paper, a successive supersymmetric rank-1 decomposition of a real higher-order supersymmetric tensor is considered. To obtain such a decomposition, we design a greedy method based on iteratively computing the best supersymmetric rank-1 approximation of the residual tensors. We further show that a supersymmetric canonical decomposition could be obtained when the method is applied to an orthogonally diagonalizable supersymmetric tensor, and in particular, when the order is 2, this method generates the eigenvalue decomposition for symmetric matrices. Details of the algorithm designed and the numerical results are reported in this paper. Copyright q 2007 John Wiley & Sons, Ltd.

[1]  J. Vandewalle,et al.  An introduction to independent component analysis , 2000 .

[2]  C. L. Nikias,et al.  Signal processing with higher-order spectra , 1993, IEEE Signal Processing Magazine.

[3]  Richard A. Harshman,et al.  Determination and Proof of Minimum Uniqueness Conditions for PARAFAC1 , 1972 .

[4]  J. Chang,et al.  Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .

[5]  Joos Vandewalle,et al.  A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..

[6]  A. Brini,et al.  The umbral symbolic method for supersymmetric tensors , 1992 .

[7]  Lieven De Lathauwer First‐order perturbation analysis of the best rank‐(R1, R2, R3) approximation in multilinear algebra , 2004 .

[8]  N. Sidiropoulos,et al.  On the uniqueness of multilinear decomposition of N‐way arrays , 2000 .

[9]  Pierre Comon,et al.  Independent component analysis, A new concept? , 1994, Signal Process..

[10]  Gian-Carlo Rota,et al.  Apolarity and Canonical Forms for Homogeneous Polynomials , 1993, Eur. J. Comb..

[11]  Richard A. Harshman,et al.  Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .

[12]  P. Regalia,et al.  Tensor Approximation and Signal Processing Applications , 2005 .

[13]  P. McCullagh Tensor Methods in Statistics , 1987 .

[14]  Jean-Franois Cardoso High-Order Contrasts for Independent Component Analysis , 1999, Neural Computation.

[15]  Joos Vandewalle,et al.  Computation of the Canonical Decomposition by Means of a Simultaneous Generalized Schur Decomposition , 2005, SIAM J. Matrix Anal. Appl..

[16]  Joos Vandewalle,et al.  On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..

[17]  Liqun Qi,et al.  Eigenvalues of a real supersymmetric tensor , 2005, J. Symb. Comput..

[18]  VandewalleJoos,et al.  A Multilinear Singular Value Decomposition , 2000 .

[19]  Phillip A. Regalia,et al.  On the Best Rank-1 Approximation of Higher-Order Supersymmetric Tensors , 2001, SIAM J. Matrix Anal. Appl..

[20]  Paul H. Calamai,et al.  Projected gradient methods for linearly constrained problems , 1987, Math. Program..

[21]  L. Lathauwer First-order perturbation analysis of the best rank-(R1, R2, R3) approximation in multilinear algebra , 2004 .

[22]  J. Kruskal Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics , 1977 .

[23]  L. Lathauwer,et al.  From Matrix to Tensor : Multilinear Algebra and Signal Processing , 1996 .

[24]  Gene H. Golub,et al.  Rank-One Approximation to High Order Tensors , 2001, SIAM J. Matrix Anal. Appl..

[25]  Pierre Comon,et al.  Decomposition of quantics in sums of powers of linear forms , 1996, Signal Process..

[26]  B. Reznick Sums of Even Powers of Real Linear Forms , 1992 .