On the successive supersymmetric rank‐1 decomposition of higher‐order supersymmetric tensors
暂无分享,去创建一个
[1] J. Vandewalle,et al. An introduction to independent component analysis , 2000 .
[2] C. L. Nikias,et al. Signal processing with higher-order spectra , 1993, IEEE Signal Processing Magazine.
[3] Richard A. Harshman,et al. Determination and Proof of Minimum Uniqueness Conditions for PARAFAC1 , 1972 .
[4] J. Chang,et al. Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .
[5] Joos Vandewalle,et al. A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..
[6] A. Brini,et al. The umbral symbolic method for supersymmetric tensors , 1992 .
[7] Lieven De Lathauwer. First‐order perturbation analysis of the best rank‐(R1, R2, R3) approximation in multilinear algebra , 2004 .
[8] N. Sidiropoulos,et al. On the uniqueness of multilinear decomposition of N‐way arrays , 2000 .
[9] Pierre Comon,et al. Independent component analysis, A new concept? , 1994, Signal Process..
[10] Gian-Carlo Rota,et al. Apolarity and Canonical Forms for Homogeneous Polynomials , 1993, Eur. J. Comb..
[11] Richard A. Harshman,et al. Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .
[12] P. Regalia,et al. Tensor Approximation and Signal Processing Applications , 2005 .
[13] P. McCullagh. Tensor Methods in Statistics , 1987 .
[14] Jean-Franois Cardoso. High-Order Contrasts for Independent Component Analysis , 1999, Neural Computation.
[15] Joos Vandewalle,et al. Computation of the Canonical Decomposition by Means of a Simultaneous Generalized Schur Decomposition , 2005, SIAM J. Matrix Anal. Appl..
[16] Joos Vandewalle,et al. On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..
[17] Liqun Qi,et al. Eigenvalues of a real supersymmetric tensor , 2005, J. Symb. Comput..
[18] VandewalleJoos,et al. A Multilinear Singular Value Decomposition , 2000 .
[19] Phillip A. Regalia,et al. On the Best Rank-1 Approximation of Higher-Order Supersymmetric Tensors , 2001, SIAM J. Matrix Anal. Appl..
[20] Paul H. Calamai,et al. Projected gradient methods for linearly constrained problems , 1987, Math. Program..
[21] L. Lathauwer. First-order perturbation analysis of the best rank-(R1, R2, R3) approximation in multilinear algebra , 2004 .
[22] J. Kruskal. Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics , 1977 .
[23] L. Lathauwer,et al. From Matrix to Tensor : Multilinear Algebra and Signal Processing , 1996 .
[24] Gene H. Golub,et al. Rank-One Approximation to High Order Tensors , 2001, SIAM J. Matrix Anal. Appl..
[25] Pierre Comon,et al. Decomposition of quantics in sums of powers of linear forms , 1996, Signal Process..
[26] B. Reznick. Sums of Even Powers of Real Linear Forms , 1992 .