Sea Spectral Estimation Using ARMA Models

This paper deals with the spectral estimation of sea wave elevation time series by means of ARMA models. To start, the procedure to estimate the ARMA coefficients, based on the use of the Prony’s method applied to the auto-covariance series, is presented. Afterwards, an analysis on how the parameters involved in the ARMA reconstruction procedure—for example, the signal time length, the number of poles and data used—affect the spectral estimates is carried out, providing evidence on their effect on the accuracy of results. This allowed us to provide guidelines on how to set these parameters in order to make the ARMA model as accurate as possible. The paper focuses on mono-modal sea states. Nevertheless, examples also related to bi-modal sea states are discussed.

[1]  W. Pierson,et al.  A proposed spectral form for fully developed wind seas based on the similarity theory of S , 1964 .

[2]  Eric C. Kerrigan,et al.  Short-term ocean wave forecasting using an autoregressive moving average model , 2016, 2016 UKACC 11th International Conference on Control (CONTROL).

[3]  J. Shanks RECURSION FILTERS FOR DIGITAL PROCESSING , 1967 .

[4]  Anders Brandt,et al.  Noise and Vibration Analysis: Signal Analysis and Experimental Procedures , 2011 .

[5]  Investigation on Spectrum Estimation Methods for Bimodal Sea State Conditions † , 2021, Sensors.

[6]  B. Friedlander,et al.  The Modified Yule-Walker Method of ARMA Spectral Estimation , 1984, IEEE Transactions on Aerospace and Electronic Systems.

[7]  Pol D. Spanos,et al.  EFFICIENT ITERATIVE ARMA APPROXIMATION OF MULTIVARIATE RANDOM PROCESSES FOR STRUCTURAL DYNAMICS APPLICATIONS , 1996 .

[8]  Ulrik Dam Nielsen,et al.  A Concise Account of Techniques Available for Shipboard Sea State Estimation , 2017 .

[9]  Steven Kay,et al.  The effect of sampling rate on autocorrelation estimation , 1981 .

[10]  Giovanni Battista Rossi,et al.  Comparison of Spectrum Estimation Methods for the Accurate Evaluation of Sea State Parameters † , 2020, Sensors.

[11]  J. Cadzow,et al.  High performance spectral estimation--A new ARMA method , 1980 .

[12]  Will Gersch,et al.  Estimation of the autoregressive parameters of a mixed autoregressive moving-average time series , 1970 .

[13]  A. Walden,et al.  Spectral Analysis for Univariate Time Series , 2020 .

[14]  S. Fattah,et al.  Identification of noisy AR systems using damped sinusoidal model of autocorrelation function , 2003, IEEE Signal Processing Letters.

[15]  Henry L. Gray,et al.  A New ARMA Spectral Estimator , 1986 .

[16]  Subrata K. Chakrabarti,et al.  Handbook of Offshore Engineering , 2005 .

[17]  Toshio Iseki,et al.  Bayesian estimation of directional wave spectra based on ship motions , 1998 .

[18]  P-T. D. Spanos,et al.  ARMA Algorithms for Ocean Wave Modeling , 1983 .

[19]  V. Piscopo,et al.  The overall motion induced interruptions as operability criterion for fishing vessels , 2016 .

[20]  O. D. Anderson,et al.  The Box-Jenkins approach to time series analysis , 1977 .

[21]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[22]  Asgeir J. Sørensen,et al.  Ocean Wave Spectral Estimation Using Vessel Wave Frequency Motions , 2007 .

[23]  G. J. Lyons,et al.  REDUCED ORDER ARMA SPECTRAL ESTIMATION OF OCEAN WAVES , 1992 .

[24]  S. Gaglione,et al.  A new wave spectrum resembling procedure based on ship motion analysis , 2020 .

[25]  André Fabio Kohn,et al.  Autocorrelation and Cross‐Correlation Methods , 2006 .

[26]  S. M. Wu,et al.  Prony estimation of AR parameters of an ARMA time series , 1989 .

[27]  Robert H. Shumway,et al.  The model selection criterion AICu , 1997 .

[28]  V. Piscopo,et al.  Passenger ship seakeeping optimization by the Overall Motion Sickness Incidence , 2014 .

[29]  Clemens Elster,et al.  Deconvolution filters for the analysis of dynamic measurement processes: a tutorial , 2010 .

[30]  M. Böhm,et al.  Fatigue life estimation of explosive cladded transition joints with the use of the spectral method for the case of a random sea state , 2020 .

[31]  Ulrik Dam Nielsen,et al.  Estimation of wind sea and swell using shipboard measurements – A refined parametric modelling approach , 2016 .

[32]  Kevin Ewans,et al.  Estimation of Wind-Sea and Swell Components in a Bimodal Sea State , 2006 .

[33]  David J. Ewins,et al.  Modal Testing: Theory, Practice, And Application , 2000 .

[34]  赤池 弘次,et al.  Statistical analysis and control of dynamic systems , 1988 .