A tableau-based decision procedure for CTL*

We present a sound, complete and implementable tableau method for deciding satisfiability of formulas in the propositional version of computation tree logic CTL*. This is the first such tableau. CTL* is an exceptionally important temporal logic with applications from hardware design to agent reasoning, but there is no easily automated reasoning approach to CTL*. The tableau here is a traditional tree-shaped or top-down style tableau, and affords the possibility of reasonably quick decisions on the satisfiability of medium-sized formulas and construction of small models for them. A straightforward subroutine is given for determining when looping allows successful branch termination, but much needed further development is left as future work. In particular, a more general repetition prevention mechanism is needed to speed up the task of tableau construction.

[1]  E. Allen Emerson,et al.  Automated Temporal Reasoning about Reactive Systems , 1996, Banff Higher Order Workshop.

[2]  Christoph Sprenger Deductive local model checking , 2000 .

[3]  Mark Reynolds,et al.  An axiomatization of full Computation Tree Logic , 2001, Journal of Symbolic Logic.

[4]  A. Prasad Sistla,et al.  Deciding Full Branching Time Logic , 1985, Inf. Control..

[5]  E. Allen Emerson,et al.  The complexity of tree automata and logics of programs , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[6]  Edmund M. Clarke,et al.  Design and Synthesis of Synchronization Skeletons Using Branching-Time Temporal Logic , 1981, Logic of Programs.

[7]  G. E. Hughes,et al.  An introduction to modal logic, 2e éd., 1 vol , 1973 .

[8]  Amir Pnueli,et al.  On the synthesis of a reactive module , 1989, POPL '89.

[9]  Faron Moller,et al.  Logics for Concurrency , 1996, Lecture Notes in Computer Science.

[10]  Moshe Y. Vardi Sometimes and Not Never Re-revisited: On Branching Versus Linear Time , 1998, CONCUR.

[11]  Martin Lange,et al.  Games for modal and temporal logics , 2003 .

[12]  D. Gabbay,et al.  Handbook of tableau methods , 1999 .

[13]  Mark Reynolds,et al.  Temporal logic , 2007, Handbook of Modal Logic.

[14]  Edmund M. Clarke,et al.  Using Branching Time Temporal Logic to Synthesize Synchronization Skeletons , 1982, Sci. Comput. Program..

[15]  Clare Dixon,et al.  Clausal Resolution for CTL* , 1999, MFCS.

[16]  Mark Reynolds More Past Glories , 2000, LICS 2000.

[17]  E. A Emerson,et al.  Alternative Semantics for Temporal Logics , 1981, Theor. Comput. Sci..

[18]  Alasdair Urquhart,et al.  Temporal Logic , 1971 .

[19]  Amir Pnueli,et al.  A Deductive Proof System for CTL , 2002, CONCUR.

[20]  Joseph Y. Halpern,et al.  “Sometimes” and “not never” revisited: on branching versus linear time temporal logic , 1986, JACM.

[21]  Pierre Wolper,et al.  The tableau method for temporal logic: an overview , 1985 .

[22]  Clare Dixon,et al.  Theorem-Proving for Discrete Temporal Logic , 2005, Handbook of Temporal Reasoning in Artificial Intelligence.

[23]  Heinrich Zimmermann,et al.  Efficient Loop-Check for Backward Proof Search in Some Non-classical Propositional Logics , 1996, TABLEAUX.

[24]  Mark Reynolds,et al.  A Tableau for Bundled CTL , 2006, J. Log. Comput..

[25]  M. Fitting Proof Methods for Modal and Intuitionistic Logics , 1983 .

[26]  Mark Reynolds,et al.  An axiomatization of PCTL* , 2005, Inf. Comput..

[27]  Abdul Sattar,et al.  Bounded model checking knowledge and branching time in synchronous multi-agent systems , 2005, AAMAS '05.

[28]  Larry J. Stockmeyer,et al.  Improved upper and lower bounds for modal logics of programs , 1985, STOC '85.

[29]  Frank Wolter,et al.  Handbook of Modal Logic , 2007, Studies in logic and practical reasoning.

[30]  Jan van Leeuwen,et al.  Handbook Of Theoretical Computer Science, Vol. A , 1990 .

[31]  E. Allen Emerson,et al.  Temporal and Modal Logic , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[32]  Joseph Y. Halpern,et al.  Decision procedures and expressiveness in the temporal logic of branching time , 1982, STOC '82.

[33]  Rajeev Goré,et al.  Tableau Methods for Modal and Temporal Logics , 1999 .

[34]  Amir Pnueli,et al.  The temporal logic of programs , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[35]  Colin Stirling,et al.  Modal and temporal logics , 1993, LICS 1993.

[36]  Mark Reynolds,et al.  Towards a CTL* Tableau , 2005, FSTTCS.

[37]  Felix A. Fischer,et al.  An integrated framework for adaptive reasoning about conversation patterns , 2005, AAMAS '05.

[38]  Girish Bhat,et al.  Efficient on-the-fly model checking for CTL , 1995, Proceedings of Tenth Annual IEEE Symposium on Logic in Computer Science.

[39]  Stefan Schwendimann,et al.  A New One-Pass Tableau Calculus for PLTL , 1998, TABLEAUX.

[40]  Orna Grumberg,et al.  Buy One, Get One Free!!! , 1994, J. Log. Comput..

[41]  Max J. Cresswell,et al.  A New Introduction to Modal Logic , 1998 .

[42]  Oliver Friedmann,et al.  A Decision Procedure for CTL* Based on Tableaux and Automata , 2010, IJCAR.