Implicit Surface Reconstruction with Radial Basis Functions

This paper addresses the problem of reconstructing implicit function from point clouds with noise and outliers acquired with 3D scanners. We introduce a filtering operator based on mean shift scheme, which shift each point to local maximum of kernel density function, resulting in suppression of noise with different amplitudes and removal of outliers. The “clean” data points are then divided into subdomains using an adaptive octree subdivision method, and a local radial basis function is constructed at each octree leaf cell. Finally, we blend these local shape functions together with partition of unity to approximate the entire global domain. Numerical experiments demonstrate robust and high quality performance of the proposed method in processing a great variety of 3D reconstruction from point clouds containing noise and outliers.

[1]  Tony DeRose,et al.  Surface reconstruction from unorganized points , 1992, SIGGRAPH.

[2]  Holger Wendland,et al.  Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree , 1995, Adv. Comput. Math..

[3]  Tosiyasu L. Kunii,et al.  Function Representation of Solids Reconstructed from Scattered Surface Points and Contours , 1995, Comput. Graph. Forum.

[4]  Hans-Peter Seidel,et al.  Robust filtering of noisy scattered point data , 2005, Proceedings Eurographics/IEEE VGTC Symposium Point-Based Graphics, 2005..

[5]  Gábor Renner,et al.  Advanced surface fitting techniques , 2002, Comput. Aided Geom. Des..

[6]  D. Levin,et al.  Mesh-Independent Surface Interpolation , 2004 .

[7]  Qi Xia,et al.  Implicit fitting and smoothing using radial basis functions with partition of unity , 2005, Ninth International Conference on Computer Aided Design and Computer Graphics (CAD-CG'05).

[8]  Hans-Peter Seidel,et al.  Multi-level partition of unity implicits , 2005, SIGGRAPH Courses.

[9]  R. Beatson,et al.  Fast evaluation of radial basis functions : methods for two-dimensional polyharmonic splines , 1997 .

[10]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  N. Amenta,et al.  Defining point-set surfaces , 2004, SIGGRAPH 2004.

[12]  Marc Levoy,et al.  QSplat: a multiresolution point rendering system for large meshes , 2000, SIGGRAPH.

[13]  D. Cohen-Or,et al.  Robust moving least-squares fitting with sharp features , 2005, ACM Trans. Graph..

[14]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[15]  Kalpathi R. Subramanian,et al.  Interpolating implicit surfaces from scattered surface data using compactly supported radial basis functions , 2001, Proceedings International Conference on Shape Modeling and Applications.

[16]  Marc Alexa,et al.  Point set surfaces , 2001, Proceedings Visualization, 2001. VIS '01..

[17]  James F. O'Brien,et al.  Variational Implicit Surfaces , 1999 .

[18]  Gabriel Taubin,et al.  Estimation of Planar Curves, Surfaces, and Nonplanar Space Curves Defined by Implicit Equations with Applications to Edge and Range Image Segmentation , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Patrick Reuter,et al.  Multi-scale reconstruction of implicit surfaces with attributes from large unorganized point sets , 2004, Proceedings Shape Modeling Applications, 2004..

[20]  Richard K. Beatson,et al.  Reconstruction and representation of 3D objects with radial basis functions , 2001, SIGGRAPH.

[21]  Andrés Iglesias,et al.  Functional networks for B-spline surface reconstruction , 2004, Future Gener. Comput. Syst..

[22]  Hans-Peter Seidel,et al.  A multi-scale approach to 3D scattered data interpolation with compactly supported basis functions , 2003, 2003 Shape Modeling International..

[23]  Yizong Cheng,et al.  Mean Shift, Mode Seeking, and Clustering , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  Tamy Boubekeur,et al.  Volume‐Surface Trees , 2006, Comput. Graph. Forum.