The two putative comS homologs of the biotechnologically important Bacillus licheniformis do not contribute to competence development

[1]  H. Liesegang,et al.  Unravelling the genetic basis for competence development of auxotrophic Bacillus licheniformis 9945A strains. , 2014, Microbiology.

[2]  H. Deeth,et al.  Draft Genome Comparison of Representatives of the Three Dominant Genotype Groups of Dairy Bacillus licheniformis Strains , 2014, Applied and Environmental Microbiology.

[3]  H. Liesegang,et al.  First Insights into the Completely Annotated Genome Sequence of Bacillus licheniformis Strain 9945A , 2013, Genome Announcements.

[4]  Rodrigo Lopez,et al.  Analysis Tool Web Services from the EMBL-EBI , 2013, Nucleic Acids Res..

[5]  F. Meinhardt,et al.  Generation of biologically contained, readily transformable, and genetically manageable mutants of the biotechnologically important Bacillus pumilus , 2013, Applied Microbiology and Biotechnology.

[6]  O. Kuipers,et al.  Correction: Functional Analysis of the ComK Protein of Bacillus coagulans , 2013, PLoS ONE.

[7]  O. Kuipers,et al.  Functional Analysis of the ComK Protein of Bacillus coagulans , 2013, PloS one.

[8]  H. Liesegang,et al.  Facilitation of Direct Conditional Knockout of Essential Genes in Bacillus licheniformis DSM13 by Comparative Genetic Analysis and Manipulation of Genetic Competence , 2010, Applied and Environmental Microbiology.

[9]  M. Ogura,et al.  Bacillus subtilis Response Regulator DegU Is a Direct Activator of pgsB Transcription Involved in γ-Poly-glutamic Acid Synthesis , 2009, Bioscience, biotechnology, and biochemistry.

[10]  I-Min A. Chen,et al.  IMG ER: a system for microbial genome annotation expert review and curation , 2009, Bioinform..

[11]  A. Danchin,et al.  From a consortium sequence to a unified sequence: the Bacillus subtilis 168 reference genome a decade later , 2009, Microbiology.

[12]  W. Deckwer,et al.  A sucrose-inducible promoter system for the intra- and extracellular protein production in Bacillus megaterium. , 2007, Journal of biotechnology.

[13]  V. Eldholm,et al.  Natural genetic transformation: prevalence, mechanisms and function. , 2007, Research in microbiology.

[14]  Rodrigo Lopez,et al.  Clustal W and Clustal X version 2.0 , 2007, Bioinform..

[15]  Kazuo Kobayashi Gradual activation of the response regulator DegU controls serial expression of genes for flagellum formation and biofilm formation in Bacillus subtilis , 2007, Molecular microbiology.

[16]  B. Morgenstern,et al.  Comparative analysis of the complete genome sequence of the plant growth–promoting bacterium Bacillus amyloliquefaciens FZB42 , 2007, Nature Biotechnology.

[17]  W. Deckwer,et al.  Bacillus megaterium—from simple soil bacterium to industrial protein production host , 2007, Applied Microbiology and Biotechnology.

[18]  D. Verhamme,et al.  DegU co‐ordinates multicellular behaviour exhibited by Bacillus subtilis , 2007, Molecular microbiology.

[19]  D. Dubnau,et al.  A peptide signal for adapter protein-mediated degradation by the AAA+ protease ClpCP. , 2007, Molecular cell.

[20]  L. Pease,et al.  Gene splicing and mutagenesis by PCR-driven overlap extension , 2007, Nature Protocols.

[21]  F. Meinhardt,et al.  Isolation and Molecular Characterization of Chitinase-Deficient Bacillus licheniformis Strains Capable of Deproteinization of Shrimp Shell Waste To Obtain Highly Viscous Chitin , 2006, Applied and Environmental Microbiology.

[22]  R. Losick,et al.  Bistability in bacteria , 2006, Molecular microbiology.

[23]  L. Dijkhuizen,et al.  A Bacillus megaterium Plasmid System for the Production, Export, and One-Step Purification of Affinity-Tagged Heterologous Levansucrase from Growth Medium , 2006, Applied and Environmental Microbiology.

[24]  D. Dubnau,et al.  Bistability in the Bacillus subtilis K‐state (competence) system requires a positive feedback loop , 2005, Molecular microbiology.

[25]  F. Meinhardt,et al.  The Bacillus megaterium comE locus encodes a functional DNA uptake protein , 2004, Journal of basic microbiology.

[26]  H. Liesegang,et al.  Structural and Functional Characterization of Gene Clusters Directing Nonribosomal Synthesis of Bioactive Cyclic Lipopeptides in Bacillus amyloliquefaciens Strain FZB42 , 2004, Journal of bacteriology.

[27]  F. Meinhardt,et al.  Structural and functional characterization of the Bacillus megaterium uvrBA locus and generation of UV-sensitive mutants , 2004, Applied Microbiology and Biotechnology.

[28]  Stanley N Cohen,et al.  High frequency transformation of Bacillus subtilis protoplasts by plasmid DNA , 1979, Molecular and General Genetics MGG.

[29]  Ajay Singh,et al.  Developments in the use of Bacillus species for industrial production. , 2004, Canadian journal of microbiology.

[30]  F. Meinhardt,et al.  Identification and functional characterization of a type I signal peptidase gene of Bacillus megaterium DSM319 , 2004, Applied Microbiology and Biotechnology.

[31]  Oscar P Kuipers,et al.  Controlling competence in Bacillus subtilis: shared use of regulators. , 2003, Microbiology.

[32]  T. Msadek,et al.  Distinct clpP Genes Control Specific Adaptive Responses in Bacillus thuringiensis , 2002, Journal of bacteriology.

[33]  S. Ehrlich,et al.  Co-linear scaffold of the Bacillus licheniformis and Bacillus subtilis genomes and its use to compare their competence genes. , 2002, FEMS microbiology letters.

[34]  A. Grossman,et al.  Characterization of comQ and comX, Two Genes Required for Production of ComX Pheromone in Bacillus subtilis , 2002, Journal of bacteriology.

[35]  D. Dubnau,et al.  The pleiotropic response regulator DegU functions as a priming protein in competence development in Bacillus subtilis. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Hideaki Nanamiya,et al.  Natural Genetic Competence in Bacillus subtilis Natto OK2 , 2000, Journal of bacteriology.

[37]  D. Dubnau,et al.  DNA uptake in bacteria. , 1999, Annual review of microbiology.

[38]  I. Kurtser,et al.  An Autoregulatory Circuit Affecting Peptide Signaling in Bacillus subtilis , 1999, Journal of bacteriology.

[39]  D. Dubnau,et al.  The N‐ and C‐terminal domains of MecA recognize different partners in the competence molecular switch , 1999, Molecular microbiology.

[40]  T. Msadek When the going gets tough: survival strategies and environmental signaling networks in Bacillus subtilis. , 1999, Trends in microbiology.

[41]  M. Nakano,et al.  Mutational analysis of ComS: evidence for the interaction of ComS and MecA in the regulation of competence development in Bacillus subtilis , 1999, Molecular microbiology.

[42]  D. Dubnau,et al.  Competence in Bacillus subtilis is controlled by regulated proteolysis of a transcription factor , 1998, The EMBO journal.

[43]  D. Dubnau,et al.  Biochemical characterization of a molecular switch involving the heat shock protein ClpC, which controls the activity of ComK, the competence transcription factor of Bacillus subtilis. , 1997, Genes & development.

[44]  D. Sinderen,et al.  Regulated expression of the dinR and recA genes during competence development and SOS induction in Bacillus subtilis , 1996, Molecular microbiology.

[45]  M. Nakano,et al.  Plasmid-amplified comS enhances genetic competence and suppresses sinR in Bacillus subtilis , 1996, Journal of bacteriology.

[46]  A. Grossman,et al.  Purification and characterization of an extracellular peptide factor that affects two different developmental pathways in Bacillus subtilis. , 1996, Genes & development.

[47]  D. Dubnau,et al.  Inactivation of mecA prevents recovery from the competent state and interferes with cell division and the partitioning of nucleoids in Bacillus subtilis , 1995, Molecular microbiology.

[48]  M. Nakano,et al.  Translation of the open reading frame encoded by comS, a gene of the srf operon, is necessary for the development of genetic competence, but not surfactin biosynthesis, in Bacillus subtilis , 1995, Journal of bacteriology.

[49]  D. Dubnau,et al.  comK encodes the competence transcription factor, the key regulatory protein for competence development in Bacillus subtilis , 1995, Molecular microbiology.

[50]  D. Sinderen,et al.  A small gene, designated comS, located within the coding region of the fourth amino acid‐activation domain of srfA, is required for competence development in Bacillus subtilis , 1995, Molecular microbiology.

[51]  M. Nakano,et al.  Identification of comS, a gene of the srfA operon that regulates the establishment of genetic competence in Bacillus subtilis. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[52]  M. G. Lorenz,et al.  Bacterial gene transfer by natural genetic transformation in the environment. , 1994, Microbiological reviews.

[53]  D. Sinderen,et al.  comK acts as an autoregulatory control switch in the signal transduction route to competence in Bacillus subtilis , 1994, Journal of bacteriology.

[54]  A. Grossman,et al.  Biochemical and genetic characterization of a competence pheromone from B. subtilis , 1994, Cell.

[55]  D. Dubnau,et al.  ComA, a phosphorylated response regulator protein of Bacillus subtilis, binds to the promoter region of srfA , 1993, Journal of bacteriology.

[56]  G. Rapoport,et al.  The phosphorylation state of the DegU response regulator acts as a molecular switch allowing either degradative enzyme synthesis or expression of genetic competence in Bacillus subtilis. , 1992, The Journal of biological chemistry.

[57]  M. Nakano,et al.  The primary role of comA in establishment of the competent state in Bacillus subtilis is to activate expression of srfA , 1991, Journal of bacteriology.

[58]  D. Dubnau,et al.  Growth stage signal transduction and the requirements for srfA induction in development of competence , 1991, Journal of bacteriology.

[59]  G. Rapoport,et al.  DegS-DegU and ComP-ComA modulator-effector pairs control expression of the Bacillus subtilis pleiotropic regulatory gene degQ , 1991, Journal of bacteriology.

[60]  G. Rapoport,et al.  Signal transduction pathway controlling synthesis of a class of degradative enzymes in Bacillus subtilis: expression of the regulatory genes and analysis of mutations in degS and degU , 1990, Journal of bacteriology.

[61]  C. Harwood,et al.  Molecular biological methods for Bacillus , 1990 .

[62]  S. S. Smith,et al.  Quantitative evaluation of Escherichia coli host strains for tolerance to cytosine methylation in plasmid and phage recombinants. , 1989, Nucleic acids research.

[63]  D. Dubnau,et al.  Isolation and characterization of Tn917lac-generated competence mutants of Bacillus subtilis , 1987, Journal of bacteriology.

[64]  F. Kawamura,et al.  Construction of a Bacillus subtilis double mutant deficient in extracellular alkaline and neutral proteases , 1984, Journal of bacteriology.

[65]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[66]  C. B. Thorne,et al.  Genetic Mapping of Genes Concerned with Glutamyl Polypeptide Production by Bacillus licheniformis and a Study of Their Relationship to the Development of Competence for Transformation , 1971, Journal of bacteriology.

[67]  L. Campbell,et al.  Transformation in Bacillus amyloliquefaciens , 1971, Journal of bacteriology.

[68]  K. Bott,et al.  Development of Competence in the Bacillus subtilis Transformation System , 1967, Journal of bacteriology.

[69]  C. B. Thorne,et al.  Factors affecting transformation of Bacillus licheniformis. , 1966, Journal of bacteriology.

[70]  C. Leonard,et al.  TRANSFORMATION TO PROTOTROPHY AND POLYGLUTAMIC ACID SYNTHESIS IN BACILLUS LICHENIFORMIS , 1964, Journal of bacteriology.

[71]  C. B. Thorne,et al.  TRANSFORMATION OF BACILLUS LICHENIFORMIS , 1964, Journal of bacteriology.

[72]  C. B. Thorne,et al.  EFFECTS OF SOME METALLIC IONS ON GLUTAMYL POLYPEPTIDE SYNTHESIS BY BACILLUS SUBTILIS , 1958, Journal of bacteriology.

[73]  J. Spizizen,et al.  TRANSFORMATION OF BIOCHEMICALLY DEFICIENT STRAINS OF BACILLUS SUBTILIS BY DEOXYRIBONUCLEATE. , 1958, Proceedings of the National Academy of Sciences of the United States of America.

[74]  P. Burkholder,et al.  Induced biochemical mutations in Bacillus subtilis. , 1947, American journal of botany.