Eukaryotic Microorganisms and Stone Biodeterioration

Eukaryotic microorganisms (especially green algae and fungi) can have a significant impact on the structure and appearance of stone cultural heritage. This paper reviews current knowledge on the role of eukaryotes in the biodeterioration of stone. Considerable uncertainty remains over community-level interactions and the response of lithobiontic communities to environmental change. Three inter-linked approaches to future research are proposed: (1) long-term ecological field studies; (2) diversity studies based on new molecular techniques and (3) laboratory-based simulation studies. The overall goal of these research efforts should be the formulation of robust models of stone deterioration that integrate biotic and abiotic factors and can be used to aid prediction and management of eukaryotic growths on stone cultural heritage.

[1]  J. Schneider,et al.  Impact of endolithic biofilms on carbonate rock surfaces , 2002, Geological Society, London, Special Publications.

[2]  D. A. Larson,et al.  Airborne Algae: Their Abundance and Heterogeneity , 1964, Science.

[3]  J. Braams,et al.  Biodeterioration of stone: a review , 2000 .

[4]  C. Saiz-Jimenez,et al.  The fungal colonisation of rock-art caves: experimental evidence , 2009, Naturwissenschaften.

[5]  W. Krumbein,et al.  PROCEDURES AND METHODS FOR THE ASSESSMENT OF MICROBIOLOGICAL INFLUENCES ON STONE DECAY , 1991 .

[6]  N. S. Baer,et al.  Stone Conservation: An Overview of Current Research@@@Saving Our Architectural Heritage: The Conservation of Historic Stone Structures , 1998 .

[7]  J. Kristiansen Dispersal of freshwater algae — a review , 1996 .

[8]  A. Z. Miller,et al.  Reproducing stone monument photosynthetic-based colonization under laboratory conditions. , 2008, The Science of the total environment.

[9]  A. Couté,et al.  Factors involved in the colonisation of building façades by algae and cyanobacteria in France , 2006, Biofouling.

[10]  T. Bailey Spatial Analysis: A Guide for Ecologists , 2006 .

[11]  M. Hoppert,et al.  Biofilms and extracellular matrices on geomaterials , 2004 .

[12]  M. Hoppert,et al.  Colonization strategies of lithobiontic microorganisms on carbonate rocks , 2004 .

[13]  G. Gadd,et al.  Geomycology: fungi in mineral substrata , 2003 .

[14]  J. Schneider,et al.  CONSTRUCTION AND DESTRUCTION OF CARBONATES BY MARINE AND FRESHWATER CYANOBACTERIA , 1999 .

[15]  David J. Mulla,et al.  Geostatistical Tools for Modeling and Interpreting Ecological Spatial Dependence , 1992 .

[16]  Implications of climate change and increased 'time-of-wetness' for the soiling and decay of sandstone structures in Belfast, Northern Ireland , 2004 .

[17]  Cesáreo Sáiz-Jiménez,et al.  Biodeterioration of building materials by cyanobacteria and algae , 1991 .

[18]  L. K. Herrera,et al.  The importance of atmospheric effects on biodeterioration of cultural heritage constructional materials , 2004 .

[19]  M. Fortin,et al.  Spatial Analysis: A Guide for Ecologists 1st edition , 2005 .

[20]  A. Rifon-Lastra,et al.  Green algae associated with the granite walls of monuments in Galicia (NW Spain) , 2001 .

[21]  L. Hoffmann Algae of terrestrial habitats , 1989, The Botanical Review.

[22]  Heather Viles,et al.  Soiling and microbial colonisation on urban roadside limestone: a three year study in Oxford, England , 2003 .

[23]  H. Viles Implications of future climate change for stone deterioration , 2002, Geological Society, London, Special Publications.

[24]  Anna Freud,et al.  Ecology of Algae , 1906, Botanical Gazette.

[25]  L. Morrison,et al.  Seaweed attachment to bedrock: biophysical evidence for a new geophycology paradigm , 2009, Geobiology.

[26]  Christine C. Gaylarde,et al.  Algal and Cyanobacterial Biofilms on Calcareous Historic Buildings , 2003, Current Microbiology.

[27]  D. Gleeson,et al.  Characterization of Fungal Community Structure on a Weathered Pegmatitic Granite , 2005, Microbial Ecology.

[28]  William Murphy,et al.  Enhancement of physical weathering of building stones by microbial populations , 2000 .

[29]  Surendra Singh,et al.  Diversity and seasonal variation of viable algal particles in the atmosphere of a subtropical city in India. , 2006, Environmental research.

[30]  R. Mitchell,et al.  Microbial deterioration of historic stone , 2005 .

[31]  K. Hall,et al.  A note on biological weathering on nunataks of the juneau icefield, Alaska , 2006 .

[32]  M. Begon,et al.  Ecology : individuals, populations and communities [Begon,1996] , 1996 .

[33]  Cesáreo Sáiz-Jiménez,et al.  Fungi in weathered sandstone from Salamanca cathedral, Spain , 1991 .

[34]  M. Sommerfeld,et al.  Algal biomass and primary production within a temperate zone sandstone , 1987 .

[35]  G. Gómez-Alarcón,et al.  Biochemical mechanisms of stone alteration carried out by filamentous fungi living in monuments , 1992 .

[36]  L. Tomaselli,et al.  Biodeterioration of ornamental marble statues in the Boboli Gardens (Florence, Italy) , 2000, Journal of Applied Phycology.

[37]  Geoffrey M Gadd,et al.  Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. , 2007, Mycological research.

[38]  T. W. Becker,et al.  Studies on the temporal development of microbial infection of different types of sedimentary rocks and its effect on the alteration of the physico-chemical properties in building materials , 1993 .

[39]  A. Gorbushina,et al.  Role of black fungi in color change and biodeterioration of antique marbles , 1993 .

[40]  Siegfried Siegesmund,et al.  Natural Stone, Weathering Phenomena, Conservation Strategies and Case Studies , 2003 .

[41]  M. Guiry,et al.  DISTRIBUTION, MORPHOLOGY, AND PHYLOGENY OF KLEBSORMIDIUM (KLEBSORMIDIALES, CHAROPHYCEAE) IN URBAN ENVIRONMENTS IN EUROPE 1 , 2008, Journal of phycology.

[42]  H. Viles,et al.  Bioprotection explored: the story of a little known earth surface process , 2005 .

[43]  J. Dupont,et al.  Fungal weathering of basaltic rocks in a cold oceanic environment (Iceland): comparison between experimental and field observations , 2002 .

[44]  Wolfgang Sand,et al.  The microbiology of masonry biodeterioration , 1993 .

[45]  C. Gaylarde,et al.  Microbial deterioration of stone monuments--an updated overview. , 2009, Advances in applied microbiology.

[46]  R. Palmer,et al.  Biomass and organic acids in sandstone of a weathering building: Production by bacterial and fungal isolates , 1991, Microbial Ecology.

[47]  M. Guiry,et al.  Composition and distribution of subaerial algal assemblages in Galway City, western Ireland , 2003 .

[48]  J. Wilson Ecological Assembly Rules: Assembly rules in plant communities , 1999 .

[49]  F. Rindi Diversity, Distribution and Ecology of Green Algae and Cyanobacteria in Urban Habitats , 2007 .

[50]  Piero Tiano,et al.  Biodiversity of photosynthetic micro-organisms dwelling on stone monuments , 2000 .

[51]  J. Lorenzo,et al.  ALGAE AND BACTERIA ON HISTORIC MONUMENTS AT ALCALA DE HENARES, SPAIN , 1997 .

[52]  O. Loucks,et al.  From Balance of Nature to Hierarchical Patch Dynamics: A Paradigm Shift in Ecology , 1995, The Quarterly Review of Biology.

[53]  F. E. Round,et al.  The ecology of algae , 1981 .

[54]  Virendra Kumar,et al.  Biodeterioration of sandstone under the influence of different humidity levels in laboratory conditions , 2009 .

[55]  J. Vestal,et al.  Biogeochemistry of oxalate in the antarctic cryptoendolithic lichen-dominated community , 1993, Microbial Ecology.

[56]  G. Gadd,et al.  Fungi in Biogeochemical Cycles: Fungal dissolution and transformation of minerals: significance for nutrient and metal mobility , 2006 .

[57]  C. Gaylarde,et al.  Phototrophic Biofilms on Ancient Mayan Buildings in Yucatan, Mexico , 2000, Current Microbiology.

[58]  M. El-Raey,et al.  Vulnerability assessment of the coastal zone of the Nile delta of Egypt, to the impacts of sea level rise , 1997 .

[59]  G. Gadd Interactions of fungip with toxic metals , 1993 .

[60]  N. Indictor,et al.  The biodeterioration of stone: a review of deterioration mechanisms, conservation case histories, and treatment , 1991 .

[61]  Christine C. Gaylarde,et al.  A comparative study of the major microbial biomass of biofilms on exteriors of buildings in Europe and Latin America , 2005 .

[62]  Wolfgang Sand,et al.  Biodeterioration of mineral materials by microorganisms—biogenic sulfuric and nitric acid corrosion of concrete and natural stone , 1991 .

[63]  N. Pace A molecular view of microbial diversity and the biosphere. , 1997, Science.

[64]  Mary J. Thornbush,et al.  Changing patterns of soiling and microbial growth on building stone in Oxford, England after implementation of a major traffic scheme. , 2006, The Science of the total environment.

[65]  O. Salvadori,et al.  Literature on lichens and biodeterioration of stonework. I , 1994 .

[66]  B. Ehlmann,et al.  Quantitative morphologic analysis of boulder shape and surface texture to infer environmental history: A case study of rock breakdown at the Ephrata Fan, Channeled Scabland, Washington , 2008 .

[67]  L. Tomaselli,et al.  Phototrophic biodeteriogens on lithoid surfaces: An ecological study , 1995, Microbial Ecology.

[68]  J. Meneely,et al.  HD Laser scanning for the evaluation of salt decay laboratory simulations of building limestone , 2008 .

[69]  D. Allsopp,et al.  Microbial deterioration of building stone - a review. , 1993 .

[70]  Wolfgang E. Krumbein,et al.  Microbial precipitation of manganese by bacteria and fungi from desert rock and rock varnish , 1992 .

[71]  Katja Sterflinger,et al.  Fungi as Geologic Agents , 2000 .

[72]  Rachael D. Wakefield,et al.  Investigations of decayed sandstone colonised by a species ofTrentepohlia , 1996 .

[73]  P. Stevens,et al.  The Chronosequence Concept and Soil Formation , 1970, The Quarterly Review of Biology.

[74]  Cesáreo Sáiz-Jiménez,et al.  Biodeterioration vs biodegradation: the role of microorganisms in the removal of pollutants deposited on historic buidlings , 1997 .

[75]  J. Gu,et al.  Changes in the biofilm microflora of limestone caused by atmospheric pollutants , 2000 .

[76]  C. Fanelli,et al.  Different Interactions of Fungi with Toxic Metals , 1994 .

[77]  U. Karsten,et al.  Quantification of algal biofilms colonising building materials: chlorophyll a measured by PAM-fluorometry as a biomass parameter , 2006, Biofouling.

[78]  A. Hursthouse,et al.  A Preliminary Study of the Phycological Degradation of Natural Stone Masonry , 2003, Environmental geochemistry and health.

[79]  U. Karsten,et al.  Aeroterrestrial Microalgae Growing in Biofilms on Facades—Response to Temperature and Water Stress , 2006, Microbial Ecology.

[80]  A. Gorbushina Fungi in Biogeochemical Cycles: Fungal activities in subaerial rock-inhabiting microbial communities , 2006 .

[81]  Wolfgang Sand,et al.  Microbial mechanisms of deterioration of inorganic substrates—A general mechanistic overview , 1997 .

[82]  O. Guillitte,et al.  Bioreceptivity : a new concept for building ecology studies , 1995 .

[83]  J. Harper Population Biology of Plants , 1979 .

[84]  J. Stiller,et al.  Phyto‐specific 16S rDNA PCR primers for recovering algal and plant sequences from mixed samples , 2005 .

[85]  G. Caneva,et al.  Biodeterioration of monuments in relation to climatic changes in Rome between 19–20th centuries , 1995 .

[86]  M. Guiry,et al.  DIVERSITY, LIFE HISTORY, AND ECOLOGY OF TRENTEPOHLIA AND PRINTZINA (TRENTEPOHLIALES, CHLOROPHYTA) IN URBAN HABITATS IN WESTERN IRELAND 1 , 2002 .

[87]  Surendra Singh,et al.  Meteorological factors affecting the diversity of airborne algae in an urban atmosphere , 2006 .

[88]  Jan Lepš,et al.  Multivariate Analysis of Ecological Data using CANOCO , 2003 .

[89]  O. Salvadori,et al.  Literature on Lichens and Biodeterioration of Stonework III , 1998, The Lichenologist.

[90]  G. Gadd,et al.  Fungal involvement in bioweathering and biotransformation of rocks and minerals , 2003, Mineralogical Magazine.

[91]  H. Viles,et al.  Wetting and drying of masonry walls: 2D-resistivity monitoring of driving rain experiments on historic stonework in Oxford, UK , 2010 .

[92]  S. Pickett,et al.  Ecology: Individuals, populations and communities , 1987 .

[93]  A. Gorbushina Life on the rocks. , 2007, Environmental microbiology.

[94]  Wolfgang E. Krumbein,et al.  Microbial Interactions with Mineral Materials , 1988 .

[95]  C. A. Crispim,et al.  Biofilms on church walls in Porto Alegre, RS, Brazil, with special attention to cyanobacteria , 2004 .

[96]  Eddie J. B. van Etten,et al.  Multivariate Analysis of Ecological Data Using canoco , 2005 .

[97]  Norbert Häubner,et al.  Chlorophyll extraction methods for the quantification of green microalgae colonizing building facades , 2005 .

[98]  J. T. Staley,et al.  Microcolonial Fungi: Common Inhabitants on Desert Rocks? , 1982, Science.

[99]  Giulia Caneva,et al.  Ecological trends in travertine colonisation by pioneer algae and plant communities. , 2003 .

[100]  R. J. Palmer,et al.  Fungi active in weathering of rock and stone monuments , 1995 .

[101]  C. Gaylarde,et al.  Lichen-like colonies of pure Trentepohlia on limestone monuments , 2006 .

[102]  M. Cassar,et al.  Climate change and the historic environment , 2003 .

[103]  I. Rosas,et al.  Meteorological effects on variation of airborne algae in Mexico , 1989 .

[104]  Wolfgang E. Krumbein,et al.  Distribution and Effects of Fungi on and in Sandstones , 1988 .

[105]  Patricia Warke,et al.  Modelling the rapid retreat of building sandstones: a case study from a polluted maritime environment , 2002, Geological Society, London, Special Publications.

[106]  Surendra Singh,et al.  AIRBORNE ALGAE: THEIR PRESENT STATUS AND RELEVANCE 1 , 2007 .

[107]  M. Guiry,et al.  Composition and spatial variability of terrestrial algal assemblages occurring at the bases of urban walls in Europe , 2004 .

[108]  F. De Leo,et al.  Sampling with adhesive tape strips: an easy and rapid method to monitor microbial colonization on monument surfaces. , 2001, Journal of microbiological methods.

[109]  Heather Viles,et al.  How wet are these walls? Testing a novel technique for measuring moisture in ruined walls , 2006 .

[110]  M. Bradford,et al.  Testing the functional significance of microbial community composition. , 2009, Ecology.

[111]  C. Cockell,et al.  Geomicrobiology of a Weathering Crust from an Impact Crater and a Hypothesis for its Formation , 2007 .

[112]  M. Hill,et al.  Data analysis in community and landscape ecology , 1987 .

[113]  C. Gaylarde,et al.  Microbial impact on building materials: an overview , 2003 .

[114]  D. John Algal growths on buildings: a general review and methods of treatment , 1988 .

[115]  David G. Mann,et al.  Algae: An Introduction to Phycology , 1996 .

[116]  James H. Brown,et al.  Microbial biogeography: putting microorganisms on the map , 2006, Nature Reviews Microbiology.

[117]  D. Hawksworth The magnitude of fungal diversity: the 1.5 million species estimate revisited * * Paper presented at , 2001 .

[118]  M. Sommerfeld,et al.  CRYPTOENDOLITHIC ALGAL COMMUNITIES OF THE COLORADO PLATEAU 1 , 1986 .

[119]  F. Eckhardt HETEROTROPHIC BACTERIA - POTENT ALLIES OF THE FILAMENTOUS FUNGI AND YEASTS ON WEATHERING BUILDING STONES AND MONUMENTS , 1991 .

[120]  Giovanna Cecchi,et al.  Fluorescence lidar technique for the remote sensing of stone monuments , 2000 .

[121]  High resolution monitoring of surface morphological change of building limestones in response to simulated salt weathering , 2008 .

[122]  O. Chertov,et al.  A model for microcolonial fungi growth on rock surfaces , 2004 .

[123]  G. Gómez-Alarcón,et al.  Manganese and iron oxidation by fungi isolated from building stone , 2004, Microbial Ecology.

[124]  Apartado Biodeterioration vs Biodegradation : the Role of Microorganisms in the Removal of Pollutants Deposited on Historic Buildings , 2003 .