ATP-Driven Synthetic Supramolecular Assemblies: From ATP as a Template to Fuel.

Adenosine triphosphate (ATP) is the molecular unit of energy that drives various processes in the cellular environment. In this minireview, we discuss the potential of physical and chemical properties of ATP for the development of bio-inspired, synthetic ATP-induced supramolecular systems with dynamic, stimuli-responsive and active assembly characteristics. Molecular design rules for ATP-induced assemblies with various architectures and their stimuli-responsive structural and functional response is categorized. Special attention is given to the immense potential of ATP-fuelled design in the nascent field of transient/non-equilibrium supramolecular polymerization for the synthesis of lifelike temporally programmable soft materials. Finally, the existing dearth and leading fate of ATP-driven systems for future challenges are proposed.

[1]  E. W. Meijer,et al.  Supramolecular Polymerization: A Conceptual Expansion for Innovative Materials , 2020 .

[2]  Subi J. George,et al.  Redox‐Mediated Transient Reconfiguration of a Supramolecular Assembly , 2020 .

[3]  Subi J. George,et al.  Self-Sorted, Random and Block Supramolecular Co-polymers via Sequence Controlled, Multicomponent Self-Assembly. , 2020, Journal of the American Chemical Society.

[4]  Subi J. George,et al.  Bioinspired, ATP-driven co-operative supramolecular polymerization and its pathway dependence. , 2020, Chemical communications.

[5]  A. Patil,et al.  Catalytic processing in ruthenium-based polyoxometalate coacervate protocells , 2020, Nature Communications.

[6]  F. Würthner,et al.  Supramolecular polymerization through kinetic pathway control and living chain growth , 2019, Nature Reviews Chemistry.

[7]  L. J. Prins,et al.  ATP-fuelled self-assembly to regulate chemical reactivity in the time domain , 2019, Chemical science.

[8]  Subi J. George,et al.  Towards Precision and Adaptive Supramolecular Materials , 2019, Advances in the Chemistry and Physics of Materials.

[9]  Loai K. E. A. Abdelmohsen,et al.  ATP‐Mediated Transient Behavior of Stomatocyte Nanosystems , 2019, Angewandte Chemie.

[10]  Charles J. Zeman,et al.  Adenosine Triphosphate Templated Self-Assembly of Cationic Porphyrin into Chiral Double Superhelices and Enzyme Mediated Disassembly. , 2019, Journal of the American Chemical Society.

[11]  A. Walther,et al.  Programmable dynamic steady states in ATP-driven nonequilibrium DNA systems , 2019, Science Advances.

[12]  F. Ricci,et al.  Fuel-Responsive Allosteric DNA-Based Aptamers for the Transient Release of ATP and Cocaine. , 2019, Angewandte Chemie.

[13]  R. Pascal,et al.  How Prebiotic Chemistry and Early Life Chose Phosphate , 2019, Life.

[14]  Subi J. George,et al.  Chemical fuel-driven living and transient supramolecular polymerization , 2019, Nature Communications.

[15]  L. J. Prins,et al.  Energy consumption in chemical fuel-driven self-assembly , 2018, Nature Nanotechnology.

[16]  Li Liu,et al.  ATP-Driven Temporal Control over Structure Switching of Polymeric Micelles. , 2018, Biomacromolecules.

[17]  Andreas Herrmann,et al.  Dissipative adaptation in driven self-assembly leading to self-dividing fibrils , 2018, Nature Nanotechnology.

[18]  Job Boekhoven,et al.  Applications of Dissipative Supramolecular Materials with a Tunable Lifetime , 2018, ChemNanoMat.

[19]  Aritra Sarkar,et al.  Bioinspired temporal supramolecular polymerization , 2018, RSC advances.

[20]  Karteek K. Bejagam,et al.  Biomimetic temporal self-assembly via fuel-driven controlled supramolecular polymerization , 2018, Nature Communications.

[21]  R. Klajn,et al.  Dissipative Self‐Assembly Driven by the Consumption of Chemical Fuels , 2018, Advanced materials.

[22]  Shikha Dhiman,et al.  Temporally Controlled Supramolecular Polymerization , 2018, Bulletin of the Chemical Society of Japan.

[23]  T. Fukushima,et al.  Supramolecular scaffolds enabling the controlled assembly of functional molecular units , 2018, Chemical science.

[24]  Wei Sang,et al.  Periodically Self‐Pulsating Microcapsule as Programmed Microseparator via ATP‐Regulated Energy Dissipation , 2018, Advanced science.

[25]  T. Aida,et al.  Guanidinium-based "molecular glues" for modulation of biomolecular functions. , 2017, Chemical Society reviews.

[26]  Jun Hu,et al.  Pulsating Polymer Micelles via ATP-Fueled Dissipative Self-Assembly. , 2017, ACS macro letters.

[27]  Andreas Walther,et al.  Materials learning from life: concepts for active, adaptive and autonomous molecular systems. , 2017, Chemical Society reviews.

[28]  Bartosz A Grzybowski,et al.  From dynamic self-assembly to networked chemical systems. , 2017, Chemical Society reviews.

[29]  Ankit Jain,et al.  Adenosine-Phosphate-Fueled, Temporally Programmed Supramolecular Polymers with Multiple Transient States. , 2017, Journal of the American Chemical Society.

[30]  S. Maiti,et al.  Transient self-assembly of molecular nanostructures driven by chemical fuels. , 2017, Current opinion in biotechnology.

[31]  Ankit Jain,et al.  Temporal switching of an amphiphilic self-assembly by a chemical fuel-driven conformational response , 2017, Chemical science.

[32]  Alessandro Sorrenti,et al.  Non-equilibrium steady states in supramolecular polymerization , 2017, Nature Communications.

[33]  J. Waltho,et al.  Metal Fluorides as Analogues for Studies on Phosphoryl Transfer Enzymes. , 2017, Angewandte Chemie.

[34]  Yin Jin,et al.  Metallfluoride als Analoga für Studien an Phosphoryltransferenzymen , 2017 .

[35]  Tom F. A. de Greef,et al.  Non-equilibrium supramolecular polymerization , 2017, Chemical Society reviews.

[36]  Subi J. George,et al.  Transient Helicity: Fuel-Driven Temporal Control over Conformational Switching in a Supramolecular Polymer. , 2017, Angewandte Chemie.

[37]  Su-Jin Park,et al.  Self-Assembled Tb3+ Complex Probe for Quantitative Analysis of ATP during Its Enzymatic Hydrolysis via Time-Resolved Luminescence in Vitro and in Vivo. , 2017, ACS applied materials & interfaces.

[38]  Stephen Mann,et al.  Spontaneous assembly of chemically encoded two-dimensional coacervate droplet arrays by acoustic wave patterning , 2016, Nature Communications.

[39]  L. J. Prins,et al.  Dynamic nanoproteins: self-assembled peptide surfaces on monolayer protected gold nanoparticles. , 2016, Chemical communications.

[40]  L. J. Prins,et al.  Catalytic signal amplification for the discrimination of ATP and ADP using functionalised gold nanoparticles. , 2016, Organic & biomolecular chemistry.

[41]  S. Maiti,et al.  Dissipative self-assembly of vesicular nanoreactors. , 2016, Nature chemistry.

[42]  Bartosz A Grzybowski,et al.  The nanotechnology of life-inspired systems. , 2016, Nature nanotechnology.

[43]  M. Surin From nucleobase to DNA templates for precision supramolecular assemblies and synthetic polymers , 2016 .

[44]  Hao Li,et al.  Controlling amphiphilic copolymer self-assembly morphologies based on macrocycle/anion recognition and nucleotide-induced payload release , 2016, Chemical science.

[45]  Shiguo Sun,et al.  A novel platform self-assembled from squaraine-embedded Zn(ii) complexes for selective monitoring of ATP and its level fluctuation in mitotic cells. , 2016, The Analyst.

[46]  Krzysztof Matyjaszewski,et al.  From precision polymers to complex materials and systems , 2016 .

[47]  T. Aida,et al.  Boronic Acid-Appended Molecular Glues for ATP-Responsive Activity Modulation of Enzymes. , 2016, Journal of the American Chemical Society.

[48]  Feihe Huang,et al.  Cationic pillar[6]arene/ATP host–guest recognition: selectivity, inhibition of ATP hydrolysis, and application in multidrug resistance treatment , 2016, Chemical science.

[49]  A. J. Markvoort,et al.  Programmable chemical reaction networks: emulating regulatory functions in living cells using a bottom-up approach. , 2015, Chemical Society reviews.

[50]  Subi J. George,et al.  The molecular recognition controlled stereomutation cycle in a dynamic helical assembly. , 2015, Organic & biomolecular chemistry.

[51]  Cristian Pezzato,et al.  Transient signal generation in a self-assembled nanosystem fueled by ATP , 2015, Nature Communications.

[52]  Ayyappanpillai Ajayaghosh,et al.  Living supramolecular polymerization , 2015, Science.

[53]  E. W. Meijer,et al.  Programmierbare supramolekulare Polymerisationen , 2015 .

[54]  Tom F A de Greef,et al.  Programmable Supramolecular Polymerizations. , 2015, Angewandte Chemie.

[55]  Bappaditya Roy,et al.  Tailoring of the desired selectivity and the turn-on detection range in a self-assembly-based fluorescence sensory system , 2015, Chemical science.

[56]  Zhen Gu,et al.  ATP-responsive DNA-graphene hybrid nanoaggregates for anticancer drug delivery. , 2015, Biomaterials.

[57]  Andreas Walther,et al.  Generic concept to program the time domain of self-assemblies with a self-regulation mechanism. , 2015, Nano letters.

[58]  J. Lehn Perspektiven der Chemie – Aspekte adaptiver Chemie und adaptiver Materialien , 2015 .

[59]  Jean-Marie Lehn,et al.  Perspectives in chemistry--aspects of adaptive chemistry and materials. , 2015, Angewandte Chemie.

[60]  W. Huck,et al.  Rational design of functional and tunable oscillating enzymatic networks. , 2015, Nature chemistry.

[61]  M. Martinelli,et al.  Label-free fluorescence detection of kinase activity using a gold nanoparticle based indicator displacement assay. , 2015, Organic & biomolecular chemistry.

[62]  David Beljonne,et al.  A dynamic supramolecular polymer with stimuli-responsive handedness for in situ probing of enzymatic ATP hydrolysis , 2014, Nature Communications.

[63]  G. Diao,et al.  Synthesis of the first amphiphilic pillar[6]arene and its enzyme-responsive self-assembly in water. , 2014, Chemical communications.

[64]  Subi J. George,et al.  Homotropic and heterotropic allosteric regulation of supramolecular chirality , 2014 .

[65]  Subi J. George,et al.  Supramolecular clippers for controlling photophysical processes through preorganized chromophores. , 2014, Chemistry.

[66]  Zhen Gu,et al.  ATP-triggered anticancer drug delivery , 2014, Nature Communications.

[67]  E. W. Meijer,et al.  Pathway Complexity in π-Conjugated Materials , 2014 .

[68]  Michal Hocek Faculty Opinions recommendation of Synthesis and fluorescence characteristics of ATP-based FRET probes. , 2013 .

[69]  H. Taguchi,et al.  Biomolecular robotics for chemomechanically driven guest delivery fuelled by intracellular ATP. , 2013, Nature chemistry.

[70]  V. Yam,et al.  Phosphate derivative-induced supramolecular assembly and NIR-emissive behaviour of alkynylplatinum(II) terpyridine complexes for real-time monitoring of enzymatic activities , 2013 .

[71]  Yu Liu,et al.  Phosphatase-responsive amphiphilic calixarene assembly , 2013 .

[72]  Hai‐Chen Wu,et al.  Colorimetric detection of copper ions based on a supramolecular complex of water-soluble polythiophene and ATP. , 2013, The Analyst.

[73]  L. J. Prins,et al.  Pattern-based sensing of nucleotides with functionalized gold nanoparticles. , 2013, Chemical communications.

[74]  Akira Matsumoto,et al.  A phenylboronate-functionalized polyion complex micelle for ATP-triggered release of siRNA. , 2012, Angewandte Chemie.

[75]  Subi J. George,et al.  Molecular recognition driven self-assembly and chiral induction in naphthalene diimide amphiphiles. , 2012, Chemical communications.

[76]  Xi Zhang,et al.  Enzyme-responsive polymeric supra-amphiphiles formed by the complexation of chitosan and ATP. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[77]  Feihe Huang,et al.  Stimuli-responsive supramolecular polymeric materials. , 2012, Chemical Society reviews.

[78]  S. Shinkai,et al.  Nonlinear fluorescence response driven by ATP-induced self-assembly of guanidinium-tethered tetraphenylethene. , 2012, Chemical communications.

[79]  David S. Williams,et al.  Polymer/nucleotide droplets as bio-inspired functional micro-compartments , 2012 .

[80]  E. W. Meijer,et al.  Induction of chirality in an achiral monolayer at the liquid/solid interface by a supramolecular chiral auxiliary. , 2012, Journal of the American Chemical Society.

[81]  E. W. Meijer,et al.  Pathway complexity in supramolecular polymerization , 2012, Nature.

[82]  M. Morikawa,et al.  Conversion of molecular information by luminescent nanointerface self-assembled from amphiphilic Tb(III) complexes. , 2011, Journal of the American Chemical Society.

[83]  A. Kaeser,et al.  DNA-templated assembly of dyes and extended π-conjugated systems. , 2011, Chemical communications.

[84]  Subi J. George,et al.  Insight into the chiral induction in supramolecular stacks through preferential chiral solvation. , 2011, Chemical communications.

[85]  L. J. Prins,et al.  Assessment of the morphology of mixed SAMs on Au nanoparticles using a fluorescent probe. , 2011, Chemical communications.

[86]  Xi Zhang,et al.  An enzyme-responsive polymeric superamphiphile. , 2010, Angewandte Chemie.

[87]  Jiangshan Shen,et al.  Anion-triggered melamine based self-assembly and hydrogel. , 2010, Chemical communications.

[88]  A. M. George,et al.  ABC transporters: a riddle wrapped in a mystery inside an enigma. , 2009, Trends in biochemical sciences.

[89]  Deqing Zhang,et al.  Continuous on-site label-free ATP fluorometric assay based on aggregation-induced emission of silole. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[90]  Itaru Hamachi,et al.  Molecular recognition, fluorescence sensing, and biological assay of phosphate anion derivatives using artificial Zn(II)-Dpa complexes. , 2009, Chemical communications.

[91]  H. Nonaka,et al.  Turn-on fluorescence sensing of nucleoside polyphosphates using a xanthene-based Zn(II) complex chemosensor. , 2008, Journal of the American Chemical Society.

[92]  F. Pampaloni,et al.  Microtubule architecture: inspiration for novel carbon nanotube-based biomimetic materials. , 2008, Trends in biotechnology.

[93]  K. V. van Bommel,et al.  Preparation of nanostructures by orthogonal self-assembly of hydrogelators and surfactants. , 2008, Angewandte Chemie.

[94]  M. Hariharan,et al.  A supramolecular ON-OFF-ON fluorescence assay for selective recognition of GTP. , 2006, Journal of the American Chemical Society.

[95]  Chun Xing Li,et al.  Unexpected chiroptical inversion observed for supramolecular complexes formed between an achiral polythiophene and ATP. , 2006, Chemistry, an Asian journal.

[96]  Bing Xu,et al.  Using a kinase/phosphatase switch to regulate a supramolecular hydrogel and forming the supramolecular hydrogel in vivo. , 2006, Journal of the American Chemical Society.

[97]  J. Changeux,et al.  Allosteric Mechanisms of Signal Transduction , 2005, Science.

[98]  T. Endo,et al.  ATP as building blocks for the self-assembly of excitonic nanowires. , 2005, Journal of the American Chemical Society.

[99]  Itaru Hamachi,et al.  Molecular recognition and fluorescence sensing of monophosphorylated peptides in aqueous solution by bis(zinc(II)-dipicolylamine)-based artificial receptors. , 2004, Journal of the American Chemical Society.

[100]  Gopal Das,et al.  Fluorometric Detection of Enzyme Activity with Synthetic Supramolecular Pores , 2002, Science.

[101]  E. Yashima,et al.  Electron-induced switching of the supramolecular chirality of optically active polythiophene aggregates. , 2002, Journal of the American Chemical Society.

[102]  Itaru Hamachi,et al.  First artificial receptors and chemosensors toward phosphorylated peptide in aqueous solution. , 2002, Journal of the American Chemical Society.

[103]  M. Ikeda,et al.  Positive allosteric systems designed on dynamic supramolecular scaffolds: toward switching and amplification of guest affinity and selectivity. , 2001, Accounts of chemical research.

[104]  C. Francklyn,et al.  The first step of aminoacylation at the atomic level in histidyl-tRNA synthetase. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[105]  F. Westheimer Why nature chose phosphates. , 1987, Science.

[106]  M. Kirschner,et al.  Dynamic instability of microtubule growth , 1984, Nature.

[107]  N. Isaacs,et al.  The crystal and molecular structure of adenosine triphosphate , 1971, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[108]  E. W. Meijer,et al.  Supramolecular Polymers – we've Come Full Circle , 2020 .

[109]  Maarten M. J. Smulders,et al.  Supramolecular polymerization. , 2009, Chemical reviews.

[110]  Chun Xing Li,et al.  Optically active supramolecular complex formed by ionic self-assembly of cationic perylenediimide derivative and adenosine triphosphate. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[111]  A. Zhabotinsky,et al.  Spatio-temporal patterns in a reactiondiffusion system with wave instability , 2000 .

[112]  Carl Frieden POLYMERIZATION: The Use of Kinetic Methods to Determine Mechanism , 1985 .