QUASI-EXACTLY SOLVABLE PROBLEMS AND RANDOM MATRIX THEORY
暂无分享,去创建一个
[1] S. Stramaglia,et al. QUARTIC ANHARMONIC OSCILLATOR AND RANDOM MATRIX THEORY , 1996 .
[2] P. Machnikowski. Exactly Solvable Problems in Quantum Mechanics , 1995 .
[3] V. Periwal,et al. From polymers to quantum gravity: triple-scaling in rectangular random matrix models , 1991, hep-th/9112037.
[4] Y. Lozano,et al. Introduction to Nonperturbative 2D Quantum Gravity , 1993 .
[5] P. Silvestrov. Two-dimensional gravity from d = 0 and d = 1 matrix models , 1992 .
[6] P. Silvestrov. 2D gravity from a 1D matrix model. Double scaling limit , 1992 .
[7] H. Kawai. Quantum gravity and random surfaces , 1992 .
[8] T. Morris. Chequered surfaces and complex matrices , 1991 .
[9] L. Alvarez-Gaumé. Random surfaces, statistical mechanics and string theory , 1991 .
[10] David J. Gross,et al. A Nonperturbative Treatment of Two-dimensional Quantum Gravity , 1990 .
[11] G. Parisi,et al. The Supersymmetric One-dimensional String , 1990 .
[12] A. Turbiner. Quasi-exactly-solvable problems andsl(2) algebra , 1988 .
[13] L. Molinari. Phase structure of matrix models through orthogonal polynomials , 1988 .
[14] A. Turbiner,et al. Spectral singularities and quasi-exactly solvable quantal problem , 1987 .
[15] F. Riva,et al. Large rectangular random matrices , 1987 .
[16] G. M. Cicuta,et al. From vector models to planar graphs , 1984 .
[17] D. Bessis. A new method in the combinatorics of the topological expansion , 1979 .
[18] S. Flügge,et al. Practical Quantum Mechanics , 1976 .