QUASI-EXACTLY SOLVABLE PROBLEMS AND RANDOM MATRIX THEORY

[1]  S. Stramaglia,et al.  QUARTIC ANHARMONIC OSCILLATOR AND RANDOM MATRIX THEORY , 1996 .

[2]  P. Machnikowski Exactly Solvable Problems in Quantum Mechanics , 1995 .

[3]  V. Periwal,et al.  From polymers to quantum gravity: triple-scaling in rectangular random matrix models , 1991, hep-th/9112037.

[4]  Y. Lozano,et al.  Introduction to Nonperturbative 2D Quantum Gravity , 1993 .

[5]  P. Silvestrov Two-dimensional gravity from d = 0 and d = 1 matrix models , 1992 .

[6]  P. Silvestrov 2D gravity from a 1D matrix model. Double scaling limit , 1992 .

[7]  H. Kawai Quantum gravity and random surfaces , 1992 .

[8]  T. Morris Chequered surfaces and complex matrices , 1991 .

[9]  L. Alvarez-Gaumé Random surfaces, statistical mechanics and string theory , 1991 .

[10]  David J. Gross,et al.  A Nonperturbative Treatment of Two-dimensional Quantum Gravity , 1990 .

[11]  G. Parisi,et al.  The Supersymmetric One-dimensional String , 1990 .

[12]  A. Turbiner Quasi-exactly-solvable problems andsl(2) algebra , 1988 .

[13]  L. Molinari Phase structure of matrix models through orthogonal polynomials , 1988 .

[14]  A. Turbiner,et al.  Spectral singularities and quasi-exactly solvable quantal problem , 1987 .

[15]  F. Riva,et al.  Large rectangular random matrices , 1987 .

[16]  G. M. Cicuta,et al.  From vector models to planar graphs , 1984 .

[17]  D. Bessis A new method in the combinatorics of the topological expansion , 1979 .

[18]  S. Flügge,et al.  Practical Quantum Mechanics , 1976 .