Minimax estimation in sparse canonical correlation analysis
暂无分享,去创建一个
[1] H. Hotelling. Relations Between Two Sets of Variates , 1936 .
[2] N. L. Johnson,et al. Multivariate Analysis , 1958, Nature.
[3] T. W. Anderson. An Introduction to Multivariate Statistical Analysis , 1959 .
[4] Chandler Davis. The rotation of eigenvectors by a perturbation , 1963 .
[5] W. Kahan,et al. The Rotation of Eigenvectors by a Perturbation. III , 1970 .
[6] P. Wedin. Perturbation bounds in connection with singular value decomposition , 1972 .
[7] L. Lecam. Convergence of Estimates Under Dimensionality Restrictions , 1973 .
[8] Lucien Birgé. Approximation dans les espaces métriques et théorie de l'estimation , 1983 .
[9] G. Stewart,et al. Matrix Perturbation Theory , 1990 .
[10] B. A. Schmitt. Perturbation bounds for matrix square roots and pythagorean sums , 1992 .
[11] Gene H. Golub,et al. Matrix computations (3rd ed.) , 1996 .
[12] R. Bhatia. Matrix Analysis , 1996 .
[13] Yuhong Yang,et al. Information-theoretic determination of minimax rates of convergence , 1999 .
[14] T. W. Anderson. Asymptotic Theory for Canonical Correlation Analysis , 1999 .
[15] Michael E. Tipping,et al. Probabilistic Principal Component Analysis , 1999 .
[16] I. Johnstone. On the distribution of the largest eigenvalue in principal components analysis , 2001 .
[17] C. Anderson‐Cook,et al. An Introduction to Multivariate Statistical Analysis (3rd ed.) (Book) , 2004 .
[18] I. Johnstone. MULTIVARIATE ANALYSIS AND JACOBI ENSEMBLES: LARGEST EIGENVALUE, TRACY-WIDOM LIMITS AND RATES OF CONVERGENCE. , 2008, Annals of statistics.
[19] M. Wainwright,et al. High-dimensional analysis of semidefinite relaxations for sparse principal components , 2008, 2008 IEEE International Symposium on Information Theory.
[20] Alfred O. Hero,et al. A greedy approach to sparse canonical correlation analysis , 2008, 0801.2748.
[21] Philippe Besse,et al. Sparse canonical methods for biological data integration: application to a cross-platform study , 2009, BMC Bioinformatics.
[22] I. Johnstone,et al. On Consistency and Sparsity for Principal Components Analysis in High Dimensions , 2009, Journal of the American Statistical Association.
[23] R. Tibshirani,et al. A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis. , 2009, Biostatistics.
[24] D. Tritchler,et al. Sparse Canonical Correlation Analysis with Application to Genomic Data Integration , 2009, Statistical applications in genetics and molecular biology.
[25] Aeilko H. Zwinderman,et al. Sparse canonical correlation analysis for identifying, connecting and completing gene-expression networks , 2009, BMC Bioinformatics.
[26] John Shawe-Taylor,et al. Sparse canonical correlation analysis , 2009, Machine Learning.
[27] Brian B. Avants,et al. Dementia induces correlated reductions in white matter integrity and cortical thickness: A multivariate neuroimaging study with sparse canonical correlation analysis , 2010, NeuroImage.
[28] Emmanuel J. Candès,et al. Tight Oracle Inequalities for Low-Rank Matrix Recovery From a Minimal Number of Noisy Random Measurements , 2011, IEEE Transactions on Information Theory.
[29] Dan Yang,et al. A Sparse SVD Method for High-dimensional Data , 2011, 1112.2433.
[30] Roman Vershynin,et al. Introduction to the non-asymptotic analysis of random matrices , 2010, Compressed Sensing.
[31] T. Tao. Topics in Random Matrix Theory , 2012 .
[32] Steven J. M. Jones,et al. Comprehensive molecular portraits of human breast tumors , 2012, Nature.
[33] T. Cai,et al. Sparse PCA: Optimal rates and adaptive estimation , 2012, 1211.1309.
[34] Vincent Q. Vu,et al. MINIMAX SPARSE PRINCIPAL SUBSPACE ESTIMATION IN HIGH DIMENSIONS , 2012, 1211.0373.
[35] Zongming Ma. Sparse Principal Component Analysis and Iterative Thresholding , 2011, 1112.2432.
[36] Philippe Rigollet,et al. Complexity Theoretic Lower Bounds for Sparse Principal Component Detection , 2013, COLT.
[37] Steven J. M. Jones,et al. Comprehensive molecular portraits of human breast tumours , 2013 .
[38] B. Nadler,et al. MINIMAX BOUNDS FOR SPARSE PCA WITH NOISY HIGH-DIMENSIONAL DATA. , 2012, Annals of statistics.
[39] Harrison H. Zhou,et al. Sparse CCA via Precision Adjusted Iterative Thresholding , 2013, 1311.6186.
[40] Yihong Wu,et al. Volume ratio, sparsity, and minimaxity under unitarily invariant norms , 2013, 2013 IEEE International Symposium on Information Theory.
[41] Peter J. Bickel,et al. Inferring gene-gene interactions and functional modules using sparse canonical correlation analysis , 2014, 1401.6504.
[42] Harrison H. Zhou,et al. Sparse CCA: Adaptive Estimation and Computational Barriers , 2014, 1409.8565.
[43] Quentin Berthet,et al. Statistical and computational trade-offs in estimation of sparse principal components , 2014, 1408.5369.
[44] Chao Gao,et al. Rate-optimal posterior contraction for sparse PCA , 2013, 1312.0142.
[45] Supplement to "Minimax Estimation in Sparse Canonical Correlation Analysis" , 2015 .
[46] T. Cai,et al. Optimal estimation and rank detection for sparse spiked covariance matrices , 2013, Probability theory and related fields.
[47] Peter J. Bickel,et al. Inferring gene-gene interactions and functional modules using sparse canonical correlation analysis , 2014, 1401.6504.
[48] Jiang Hu,et al. Canonical correlation coefficients of high-dimensional Gaussian vectors: Finite rank case , 2014, The Annals of Statistics.