Minimax estimation in sparse canonical correlation analysis

Canonical correlation analysis is a widely used multivariate statistical technique for exploring the relation between two sets of variables. This paper considers the problem of estimating the leading canonical correlation directions in high-dimensional settings. Recently, under the assumption that the leading canonical correlation directions are sparse, various procedures have been proposed for many highdimensional applications involving massive data sets. However, there has been few theoretical justification available in the literature. In this paper, we establish rate-optimal nonasymptotic minimax estimation with respect to an appropriate loss function for a wide range of model spaces. Two interesting phenomena are observed. First, the minimax rates are not affected by the presence of nuisance parameters, namely the covariance matrices of the two sets of random variables, though they need to be estimated in the canonical correlation analysis problem. Second, we allow the presence of the residual canonical correlation directions. However, they do not influence the minimax rates under a mild condition on eigengap. A generalized sin-theta theorem and an empirical process bound for Gaussian quadratic forms under rank constraint are used to establish the minimax upper bounds, which may be of independent interest.

[1]  H. Hotelling Relations Between Two Sets of Variates , 1936 .

[2]  N. L. Johnson,et al.  Multivariate Analysis , 1958, Nature.

[3]  T. W. Anderson An Introduction to Multivariate Statistical Analysis , 1959 .

[4]  Chandler Davis The rotation of eigenvectors by a perturbation , 1963 .

[5]  W. Kahan,et al.  The Rotation of Eigenvectors by a Perturbation. III , 1970 .

[6]  P. Wedin Perturbation bounds in connection with singular value decomposition , 1972 .

[7]  L. Lecam Convergence of Estimates Under Dimensionality Restrictions , 1973 .

[8]  Lucien Birgé Approximation dans les espaces métriques et théorie de l'estimation , 1983 .

[9]  G. Stewart,et al.  Matrix Perturbation Theory , 1990 .

[10]  B. A. Schmitt Perturbation bounds for matrix square roots and pythagorean sums , 1992 .

[11]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[12]  R. Bhatia Matrix Analysis , 1996 .

[13]  Yuhong Yang,et al.  Information-theoretic determination of minimax rates of convergence , 1999 .

[14]  T. W. Anderson Asymptotic Theory for Canonical Correlation Analysis , 1999 .

[15]  Michael E. Tipping,et al.  Probabilistic Principal Component Analysis , 1999 .

[16]  I. Johnstone On the distribution of the largest eigenvalue in principal components analysis , 2001 .

[17]  C. Anderson‐Cook,et al.  An Introduction to Multivariate Statistical Analysis (3rd ed.) (Book) , 2004 .

[18]  I. Johnstone MULTIVARIATE ANALYSIS AND JACOBI ENSEMBLES: LARGEST EIGENVALUE, TRACY-WIDOM LIMITS AND RATES OF CONVERGENCE. , 2008, Annals of statistics.

[19]  M. Wainwright,et al.  High-dimensional analysis of semidefinite relaxations for sparse principal components , 2008, 2008 IEEE International Symposium on Information Theory.

[20]  Alfred O. Hero,et al.  A greedy approach to sparse canonical correlation analysis , 2008, 0801.2748.

[21]  Philippe Besse,et al.  Sparse canonical methods for biological data integration: application to a cross-platform study , 2009, BMC Bioinformatics.

[22]  I. Johnstone,et al.  On Consistency and Sparsity for Principal Components Analysis in High Dimensions , 2009, Journal of the American Statistical Association.

[23]  R. Tibshirani,et al.  A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis. , 2009, Biostatistics.

[24]  D. Tritchler,et al.  Sparse Canonical Correlation Analysis with Application to Genomic Data Integration , 2009, Statistical applications in genetics and molecular biology.

[25]  Aeilko H. Zwinderman,et al.  Sparse canonical correlation analysis for identifying, connecting and completing gene-expression networks , 2009, BMC Bioinformatics.

[26]  John Shawe-Taylor,et al.  Sparse canonical correlation analysis , 2009, Machine Learning.

[27]  Brian B. Avants,et al.  Dementia induces correlated reductions in white matter integrity and cortical thickness: A multivariate neuroimaging study with sparse canonical correlation analysis , 2010, NeuroImage.

[28]  Emmanuel J. Candès,et al.  Tight Oracle Inequalities for Low-Rank Matrix Recovery From a Minimal Number of Noisy Random Measurements , 2011, IEEE Transactions on Information Theory.

[29]  Dan Yang,et al.  A Sparse SVD Method for High-dimensional Data , 2011, 1112.2433.

[30]  Roman Vershynin,et al.  Introduction to the non-asymptotic analysis of random matrices , 2010, Compressed Sensing.

[31]  T. Tao Topics in Random Matrix Theory , 2012 .

[32]  Steven J. M. Jones,et al.  Comprehensive molecular portraits of human breast tumors , 2012, Nature.

[33]  T. Cai,et al.  Sparse PCA: Optimal rates and adaptive estimation , 2012, 1211.1309.

[34]  Vincent Q. Vu,et al.  MINIMAX SPARSE PRINCIPAL SUBSPACE ESTIMATION IN HIGH DIMENSIONS , 2012, 1211.0373.

[35]  Zongming Ma Sparse Principal Component Analysis and Iterative Thresholding , 2011, 1112.2432.

[36]  Philippe Rigollet,et al.  Complexity Theoretic Lower Bounds for Sparse Principal Component Detection , 2013, COLT.

[37]  Steven J. M. Jones,et al.  Comprehensive molecular portraits of human breast tumours , 2013 .

[38]  B. Nadler,et al.  MINIMAX BOUNDS FOR SPARSE PCA WITH NOISY HIGH-DIMENSIONAL DATA. , 2012, Annals of statistics.

[39]  Harrison H. Zhou,et al.  Sparse CCA via Precision Adjusted Iterative Thresholding , 2013, 1311.6186.

[40]  Yihong Wu,et al.  Volume ratio, sparsity, and minimaxity under unitarily invariant norms , 2013, 2013 IEEE International Symposium on Information Theory.

[41]  Peter J. Bickel,et al.  Inferring gene-gene interactions and functional modules using sparse canonical correlation analysis , 2014, 1401.6504.

[42]  Harrison H. Zhou,et al.  Sparse CCA: Adaptive Estimation and Computational Barriers , 2014, 1409.8565.

[43]  Quentin Berthet,et al.  Statistical and computational trade-offs in estimation of sparse principal components , 2014, 1408.5369.

[44]  Chao Gao,et al.  Rate-optimal posterior contraction for sparse PCA , 2013, 1312.0142.

[45]  Supplement to "Minimax Estimation in Sparse Canonical Correlation Analysis" , 2015 .

[46]  T. Cai,et al.  Optimal estimation and rank detection for sparse spiked covariance matrices , 2013, Probability theory and related fields.

[47]  Peter J. Bickel,et al.  Inferring gene-gene interactions and functional modules using sparse canonical correlation analysis , 2014, 1401.6504.

[48]  Jiang Hu,et al.  Canonical correlation coefficients of high-dimensional Gaussian vectors: Finite rank case , 2014, The Annals of Statistics.