Robustness of the Affine Equivariant Scatter Estimator Based on the Spatial Rank Covariance Matrix
暂无分享,去创建一个
Xin Dang | Yixin Chen | Yixin Chen | Xin Dang | Kai Yu | Kai Yu
[1] H. Oja,et al. Sign and Rank Covariance Matrices: Statistical Properties and Application to Principal Components Analysis , 2002 .
[2] Douglas G. Simpson,et al. Robust Direction Estimation , 1992 .
[3] R. Serfling,et al. Spatial Trimming , with Applications to Robustify Sample Spatial Quantile and Outlyingness Functions , and to Construct a New Robust Scatter Estimator , 2010 .
[4] R. Serfling. Equivariance and invariance properties of multivariate quantile and related functions, and the role of standardisation , 2010 .
[5] Hannu Oja,et al. INFLUENCE FUNCTION AND ASYMPTOTIC EFFICIENCY OF THE AFFINE EQUIVARIANT RANK COVARIANCE MATRIX , 2004 .
[6] Hannu Oja,et al. Estimates of regression coefficients based on the sign covariance matrix , 2002 .
[7] Hannu Oja,et al. ON THE EFFICIENCY OF MULTIVARIATE SPATIAL SIGN AND RANK TESTS , 1997 .
[8] P. Rousseeuw,et al. Alternatives to the Median Absolute Deviation , 1993 .
[9] R. Maronna. Robust $M$-Estimators of Multivariate Location and Scatter , 1976 .
[10] Y. Tanaka. Sensitivity analysis in principal component analysis:influence on the subspace spanned by principal components. , 1988 .
[11] Hengjian Cui,et al. Depth weighted scatter estimators , 2005 .
[12] R. Serfling,et al. A robust sample spatial outlyingness function , 2013 .
[13] Hannu Oja,et al. Affine equivariant multivariate rank methods , 2003 .
[14] David E. Tyler,et al. Tests and estimates of shape based on spatial signs and ranks , 2009 .
[15] Weihua Zhou,et al. Projection based scatter depth functions and associated scatter estimators , 2010, J. Multivar. Anal..
[16] Hannu Oja,et al. k-Step shape estimators based on spatial signs and ranks , 2010 .
[17] H. Oja. Multivariate Nonparametric Methods with R , 2010 .
[18] P. Rousseeuw. Multivariate estimation with high breakdown point , 1985 .
[19] David E. Tyler,et al. Invariant co‐ordinate selection , 2009 .
[20] David E. Tyler,et al. On the Breakdown Properties of Some Multivariate M‐Functionals * , 2005 .
[21] H. Oja,et al. Sign and rank covariance matrices , 2000 .
[22] V. Koltchinskii. M-estimation, convexity and quantiles , 1997 .
[23] Hannu Oja,et al. Estimates of Regression Coefficients Based on Lift Rank Covariance Matrix , 2003 .
[24] Ursula Gather,et al. A note on Tyler's modification of the MAD for the Stahel-Donoho estimator , 1997 .
[25] J. Marden. Some robust estimates of principal components , 1999 .
[26] C. Croux,et al. Principal Component Analysis Based on Robust Estimators of the Covariance or Correlation Matrix: Influence Functions and Efficiencies , 2000 .
[27] David E. Tyler. Finite Sample Breakdown Points of Projection Based Multivariate Location and Scatter Statistics , 1994 .
[28] Daniel Gervini,et al. A robust and efficient adaptive reweighted estimator of multivariate location and scatter , 2003 .
[29] C. Croux,et al. The k-step spatial sign covariance matrix , 2010, Adv. Data Anal. Classif..
[30] David E. Tyler. A Distribution-Free $M$-Estimator of Multivariate Scatter , 1987 .
[31] L. Dümbgen. On Tyler's M-Functional of Scatter in High Dimension , 1998 .
[32] P. L. Davies,et al. Asymptotic behaviour of S-estimates of multivariate location parameters and dispersion matrices , 1987 .
[33] R. Randles,et al. A practical affine equivariant multivariate median , 2002 .
[34] Victor J. Yohai,et al. The Behavior of the Stahel-Donoho Robust Multivariate Estimator , 1995 .
[35] Christophe Croux,et al. High breakdown estimators for principal components: the projection-pursuit approach revisited , 2005 .
[36] Hannu Oja,et al. Multivariate Nonparametric Tests , 2004 .
[37] P. L. Davies,et al. Breakdown and groups , 2005, math/0508497.