Neural Network Dynamics and Audiovisual Integration

Why does seeing a speaker’s lip movements improve understanding speech in noisy environments? Why does simultaneous ringing and vibrating quicken answering a phone? These are questions of interest for researchers in the field of multisensory information processing. Electrophysiological approaches are suited to map the neural network dynamics underlying multisensory perception. Combining findings from behavioral, functional neuroimaging, and electrophysiological studies allows a comprehensive understanding of how information is integrated across the different senses. This chapter first provides an introduction on the relationships between neural network dynamics, as reflected in neural oscillations, and unisensory perception. Then, the relevance of neural network dynamics for multisensory perception is described, with a special focus on the auditory system. Moreover, the chapter provides an overview on how visual and auditory information can mutually influence each other and highlights the crucial role of ongoing neural network dynamics for upcoming multisensory perception. Finally, general principles of audiovisual integration are established, and open questions and future direction in the field of multisensory perception are discussed.

[1]  A. Puce,et al.  Neuronal oscillations and visual amplification of speech , 2008, Trends in Cognitive Sciences.

[2]  J. Schoffelen,et al.  Prestimulus Oscillatory Activity in the Alpha Band Predicts Visual Discrimination Ability , 2008, The Journal of Neuroscience.

[3]  P. Mitra,et al.  Analysis of dynamic brain imaging data. , 1998, Biophysical journal.

[4]  Chrysa D. Lithari,et al.  Prestimulus oscillatory alpha power and connectivity patterns predispose perceptual integration of an audio and a tactile stimulus , 2015, Human brain mapping.

[5]  Joachim Lange,et al.  Audio–visual congruency alters power and coherence of oscillatory activity within and between cortical areas , 2013, NeuroImage.

[6]  O W Sakowitz,et al.  Bisensory stimulation increases gamma-responses over multiple cortical regions. , 2001, Brain research. Cognitive brain research.

[7]  Rajesh P. N. Rao,et al.  Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. , 1999 .

[8]  D. Lindsley Psychological phenomena and the electroencephalogram. , 1952, Electroencephalography and clinical neurophysiology.

[9]  M. Steriade Impact of network activities on neuronal properties in corticothalamic systems. , 2001, Journal of neurophysiology.

[10]  Jonas Obleser,et al.  Cortical brain states and corticospinal synchronization influence TMS-evoked motor potentials. , 2014, Journal of neurophysiology.

[11]  Sabine Leske,et al.  Prestimulus Network Integration of Auditory Cortex Predisposes Near-Threshold Perception Independently of Local Excitability , 2015, Cerebral cortex.

[12]  R. Bickford,et al.  Depth electrographic study of a fast rhythm evoked from the human calcarine region by steady illumination. , 1960, Electroencephalography and clinical neurophysiology.

[13]  C. Herrmann,et al.  Gamma responses and ERPs in a visual classification task , 1999, Clinical Neurophysiology.

[14]  Semiha Aydin,et al.  GABA concentration in superior temporal sulcus predicts gamma power and perception in the sound-induced flash illusion , 2016, NeuroImage.

[15]  Ulrich Pomper,et al.  Distinct patterns of local oscillatory activity and functional connectivity underlie intersensory attention and temporal prediction , 2016, Cortex.

[16]  M. Murray,et al.  Multisensory Integration: Flexible Use of General Operations , 2014, Neuron.

[17]  Julian Keil,et al.  Neural Oscillations Orchestrate Multisensory Processing , 2018, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[18]  Luc H. Arnal,et al.  Transitions in neural oscillations reflect prediction errors generated in audiovisual speech , 2011, Nature Neuroscience.

[19]  D. Senkowski,et al.  Individual Alpha Frequency Relates to the Sound-Induced Flash Illusion. , 2018, Multisensory research.

[20]  O. Bertrand,et al.  Oscillatory gamma activity in humans and its role in object representation , 1999, Trends in Cognitive Sciences.

[21]  Daniel Senkowski,et al.  Multisensory processing and oscillatory gamma responses: effects of spatial selective attention , 2005, Experimental Brain Research.

[22]  F. D. Silva Neural mechanisms underlying brain waves: from neural membranes to networks. , 1991 .

[23]  P. Fries Rhythms for Cognition: Communication through Coherence , 2015, Neuron.

[24]  N. Logothetis,et al.  Visual modulation of neurons in auditory cortex. , 2008, Cerebral cortex.

[25]  John J. Foxe,et al.  Multisensory contributions to low-level, ‘unisensory’ processing , 2005, Current Opinion in Neurobiology.

[26]  W. Klimesch EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis , 1999, Brain Research Reviews.

[27]  A. Ghazanfar,et al.  Is neocortex essentially multisensory? , 2006, Trends in Cognitive Sciences.

[28]  J. Driver,et al.  Multisensory Interplay Reveals Crossmodal Influences on ‘Sensory-Specific’ Brain Regions, Neural Responses, and Judgments , 2008, Neuron.

[29]  E. Adrian Olfactory reactions in the brain of the hedgehog , 1942, The Journal of physiology.

[30]  Manuel Schabus,et al.  Fronto-parietal EEG coherence in theta and upper alpha reflect central executive functions of working memory. , 2005, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[31]  Hallowell Davis,et al.  ACTION POTENTIALS OF THE BRAIN: IN NORMAL PERSONS AND IN NORMAL STATES OF CEREBRAL ACTIVITY , 1936 .

[32]  J. Born,et al.  The memory function of sleep , 2010, Nature Reviews Neuroscience.

[33]  A. Engel,et al.  Beta-band oscillations—signalling the status quo? , 2010, Current Opinion in Neurobiology.

[34]  Xiao-Jing Wang Neurophysiological and computational principles of cortical rhythms in cognition. , 2010, Physiological reviews.

[35]  B. Rockstroh,et al.  Slow potentials of the cerebral cortex and behavior. , 1990, Physiological reviews.

[36]  W. Grey Walter,et al.  The Location of Cerebral Tumours by Electro-Encephalography , 1936 .

[37]  Matthias M. Müller,et al.  Probing the functional brain state during P300-evocation , 1992 .

[38]  M. Frank,et al.  Frontal theta as a mechanism for cognitive control , 2014, Trends in Cognitive Sciences.

[39]  S. Luck An Introduction to the Event-Related Potential Technique , 2005 .

[40]  G. Buzsáki,et al.  Neuronal Oscillations in Cortical Networks , 2004, Science.

[41]  W. R. Adey,et al.  Comprehensive spectral analysis of human EEG generators in posterior cerebral regions. , 1966, Electroencephalography and clinical neurophysiology.

[42]  John J. Foxe,et al.  Intersensory selective attention and temporal orienting operate in parallel and are instantiated in spatially distinct sensory and motor cortices , 2015, Human brain mapping.

[43]  Robert Oostenveld,et al.  Perception of the touch-induced visual double-flash illusion correlates with changes of rhythmic neuronal activity in human visual and somatosensory areas , 2011, NeuroImage.

[44]  D. Senkowski,et al.  Reduced frontal theta oscillations indicate altered crossmodal prediction error processing in schizophrenia. , 2016, Journal of neurophysiology.

[45]  Salvador Soto-Faraco,et al.  Speaker's Hand Gestures Modulate Speech Perception through Phase Resetting 1 of Ongoing Neural Oscillations 2 3 , 2022 .

[46]  G. Buzsáki,et al.  Natural logarithmic relationship between brain oscillators , 2003 .

[47]  R. VanRullen,et al.  The Phase of Ongoing EEG Oscillations Predicts Visual Perception , 2009, The Journal of Neuroscience.

[48]  Daniel Senkowski,et al.  Good times for multisensory integration: Effects of the precision of temporal synchrony as revealed by gamma-band oscillations , 2007, Neuropsychologia.

[49]  Julian Keil,et al.  The role of alpha oscillations for illusory perception , 2014, Behavioural Brain Research.

[50]  T. Stanford,et al.  Development of multisensory integration from the perspective of the individual neuron , 2014, Nature Reviews Neuroscience.

[51]  D. Senkowski,et al.  Taking a Call Is Facilitated by the Multisensory Processing of Smartphone Vibrations, Sounds, and Flashes , 2014, PloS one.

[52]  Shinsuke Shimojo,et al.  Sound-induced illusory flash perception: role of gamma band responses , 2002, Neuroreport.

[53]  T. Kircher,et al.  The EEG and fMRI signatures of neural integration: An investigation of meaningful gestures and corresponding speech , 2015, Neuropsychologia.

[54]  W. Singer,et al.  Dynamic predictions: Oscillations and synchrony in top–down processing , 2001, Nature Reviews Neuroscience.

[55]  John J. Foxe,et al.  Crossmodal binding through neural coherence: implications for multisensory processing , 2008, Trends in Neurosciences.

[56]  D. Senkowski,et al.  Early and late beta-band power reflect audiovisual perception in the McGurk illusion. , 2015, Journal of neurophysiology.

[57]  N. Weisz,et al.  Prestimulus beta power and phase synchrony influence the sound-induced flash illusion. , 2014, Cerebral cortex.

[58]  S. Shimojo,et al.  Sound alters visual evoked potentials in humans , 2001, Neuroreport.

[59]  R. Hari,et al.  Seeing speech: visual information from lip movements modifies activity in the human auditory cortex , 1991, Neuroscience Letters.

[60]  Manuel R. Mercier,et al.  Auditory-driven phase reset in visual cortex: Human electrocorticography reveals mechanisms of early multisensory integration , 2013, NeuroImage.

[61]  P. Fries A mechanism for cognitive dynamics: neuronal communication through neuronal coherence , 2005, Trends in Cognitive Sciences.

[62]  W. Ray,et al.  EEG alpha activity reflects attentional demands, and beta activity reflects emotional and cognitive processes. , 1985, Science.

[63]  J. Peelle,et al.  Prediction and constraint in audiovisual speech perception , 2015, Cortex.

[64]  Adrian K. C. Lee,et al.  Defining Auditory-Visual Objects: Behavioral Tests and Physiological Mechanisms , 2016, Trends in Neurosciences.

[65]  Luc H. Arnal,et al.  Dual Neural Routing of Visual Facilitation in Speech Processing , 2009, The Journal of Neuroscience.

[66]  C. Braun,et al.  Prestimulus oscillatory power and connectivity patterns predispose conscious somatosensory perception , 2014, Proceedings of the National Academy of Sciences.

[67]  H. Kennedy,et al.  Alpha-Beta and Gamma Rhythms Subserve Feedback and Feedforward Influences among Human Visual Cortical Areas , 2016, Neuron.

[68]  S. Bressler The gamma wave: a cortical information carrier? , 1990, Trends in Neurosciences.

[69]  G. Pfurtscheller Event-related synchronization (ERS): an electrophysiological correlate of cortical areas at rest. , 1992, Electroencephalography and clinical neurophysiology.

[70]  B. Stein,et al.  The Merging of the Senses , 1993 .

[71]  T. Sejnowski,et al.  Early Cross-Modal Interactions in Auditory and Visual Cortex Underlie a Sound-Induced Visual Illusion , 2007, The Journal of Neuroscience.

[72]  Andreas K. Engel,et al.  Noise alters beta-band activity in superior temporal cortex during audiovisual speech processing , 2013, NeuroImage.

[73]  John J. Foxe,et al.  Multisensory interactions in early evoked brain activity follow the principle of inverse effectiveness , 2011, NeuroImage.

[74]  G. Cheron,et al.  Pure phase-locking of beta/gamma oscillation contributes to the N30 frontal component of somatosensory evoked potentials , 2007, BMC Neuroscience.

[75]  G. Rees,et al.  Individual Differences in Alpha Frequency Drive Crossmodal Illusory Perception , 2015, Current Biology.

[76]  D. H. Warren,et al.  Immediate perceptual response to intersensory discrepancy. , 1980, Psychological bulletin.

[77]  H. Bülthoff,et al.  Merging the senses into a robust percept , 2004, Trends in Cognitive Sciences.

[78]  John J. Foxe,et al.  Neuro-Oscillatory Phase Alignment Drives Speeded Multisensory Response Times: An Electro-Corticographic Investigation , 2015, The Journal of Neuroscience.

[79]  W. H. Sumby,et al.  Visual contribution to speech intelligibility in noise , 1954 .

[80]  N. Weisz,et al.  On the variability of the McGurk effect: audiovisual integration depends on prestimulus brain states. , 2012, Cerebral cortex.

[81]  H. Berger Über das Elektrenkephalogramm des Menschen , 1929, Archiv für Psychiatrie und Nervenkrankheiten.

[82]  C. Schroeder,et al.  Neuronal Oscillations and Multisensory Interaction in Primary Auditory Cortex , 2007, Neuron.

[83]  Luc H. Arnal,et al.  Cortical oscillations and sensory predictions , 2012, Trends in Cognitive Sciences.

[84]  Virginie van Wassenhove,et al.  Visual-induced expectations modulate auditory cortical responses , 2015, Front. Neurosci..

[85]  W. Klimesch Alpha-band oscillations, attention, and controlled access to stored information , 2012, Trends in Cognitive Sciences.

[86]  Werner Lutzenberger,et al.  Hearing lips: gamma-band activity during audiovisual speech perception. , 2005, Cerebral cortex.

[87]  J. Gross,et al.  On the Role of Prestimulus Alpha Rhythms over Occipito-Parietal Areas in Visual Input Regulation: Correlation or Causation? , 2010, The Journal of Neuroscience.

[88]  F. Bremer Cerebral and cerebellar potentials. , 1958, Physiological reviews.

[89]  O. Jensen,et al.  Shaping Functional Architecture by Oscillatory Alpha Activity: Gating by Inhibition , 2010, Front. Hum. Neurosci..

[90]  S Makeig,et al.  Human auditory evoked gamma-band magnetic fields. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[91]  H. McGurk,et al.  Hearing lips and seeing voices , 1976, Nature.

[92]  S. Shimojo,et al.  Illusions: What you see is what you hear , 2000, Nature.