Transversal Numbers for Hypergraphs Arising inGeometryNoga

[1]  Jiří Matoušek,et al.  A fractional Helly theorem for convex lattice sets , 2003 .

[2]  Jiří Matoušek Intersection Patterns of Convex Sets , 2002 .

[3]  J. Herzog,et al.  Almost regular sequences and Betti numbers , 2000 .

[4]  Alexander Schrijver,et al.  Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.

[5]  Noga Alon,et al.  Bounding the piercing number , 1995, Discret. Comput. Geom..

[6]  Tamas Hausel On a Gallai-type problem for lattices , 1995 .

[7]  Paul Seymour,et al.  Bounding the vertex cover number of a hypergraph , 1994, Comb..

[8]  Leonidas J. Guibas,et al.  Improved bounds on weak ε-nets for convex sets , 1993, STOC.

[9]  N. Alon,et al.  Piercing convex sets and the hadwiger-debrunner (p , 1992 .

[10]  Noga Alon,et al.  Point Selections and Weak ε-Nets for Convex Hulls , 1992, Combinatorics, Probability and Computing.

[11]  János Komlós,et al.  Almost tight bounds forɛ-Nets , 1992, Discret. Comput. Geom..

[12]  Shmuel Onn,et al.  On the Geometry and Computational Complexity of Radon Partitions in the Integer Lattice , 1991, SIAM J. Discret. Math..

[13]  David Haussler,et al.  Epsilon-nets and simplex range queries , 1986, SCG '86.

[14]  Jürgen Eckhoff,et al.  An Upper-Bound theorem for families of convex sets , 1985 .

[15]  Robert E. Jamison-Waldner PARTITION NUMBERS FOR TREES AND ORDERED SETS , 1981 .

[16]  M. Katchalski,et al.  A Problem of Geometry in R n , 1979 .

[17]  László Lovász,et al.  Kneser's Conjecture, Chromatic Number, and Homotopy , 1978, J. Comb. Theory A.

[18]  G. Wegner,et al.  d-Collapsing and nerves of families of convex sets , 1975 .

[19]  R. Stanley The Upper Bound Conjecture and Cohen‐Macaulay Rings , 1975 .

[20]  Jean-Paul Doignon,et al.  Convexity in cristallographical lattices , 1973 .

[21]  H. Hadwiger,et al.  Über eine Variante zum Hellyschen Satz , 1957 .