Asymptotic correction of Numerov's eigenvalue estimates with general boundary conditions

The error in the estimate of the kth eigenvalue of ?y??+qy=?y, y(0)=y(?)=0, obtained by Numerov's method with uniform step length h, is O(k 6 h 4 ). The author and J. Paine showed that a correction technique of Paine, de Hoog and Anderssen reduced this to O(k 4 h 5 /sin(kh)), with negligible extra effort. Later the author extended the method to deal with boundary conditions of the form y?(a)=0. This paper shows how a similar increase in accuracy can be obtained, with a little more effort, for problems with one or more boundary conditions of the form y?(a)=?y(a) where ? ? 0 .

[1]  J. T. Marti Small potential corrections for the discrete eigenvalues of the Sturm-Liouville problem , 1990 .

[2]  G. Gheri,et al.  Spectral Corrections for Sturm-Liouville Problems , 2001 .

[3]  Alan L. Andrew Twenty years of asymptotic correction for eigenvalue computation , 2000 .

[4]  R. Anderssen,et al.  ASYMPTOTIC FORMULAS FOR DISCRETE EIGENVALUE PROBLEMS IN LIOUVILLE NORMAL FORM , 2001 .

[5]  Alan L. Andrew,et al.  Correction of Numerov's eigenvalue estimates , 1985 .

[6]  Robert S. Anderssen,et al.  On the correction of finite difference eigenvalue approximations for sturm-liouville problems with general boundary conditions , 1984 .

[7]  J. Paine,et al.  A Numerical Method for the Inverse Sturm–Liouville Problem , 1984 .

[8]  John William Paine Numerical approximation of Sturm-Liouville eigenvalues , 1980, Bulletin of the Australian Mathematical Society.

[9]  J. Pryce Numerical Solution of Sturm-Liouville Problems , 1994 .

[10]  David S. Watkins Performance of the QZ Algorithm in the Presence of Infinite Eigenvalues , 2000, SIAM J. Matrix Anal. Appl..

[11]  Alan L. Andrew,et al.  Asymptotic Correction of More Sturm–Liouville Eigenvalue Estimates , 2003 .

[12]  Robert S. Anderssen,et al.  On the correction of finite difference eigenvalue approximations for Sturm-Liouville problems , 1981, Computing.

[13]  R. Fabiano,et al.  A finite-difference algorithm for an inverse Sturm-Liouville problem , 1995 .

[14]  R. Wallace,et al.  Renormalized Numerov method applied to eigenvalue equations: extension to include single derivative terms and a variety of boundary conditions , 1985 .

[15]  C. R. Dun Algebraic correction methods for two-dimensional eigenvalue problems , 1995 .

[16]  A. Andrew Correction of finite element eigenvalues for problems with natural or periodic boundary conditions , 1988 .

[17]  Karl Meerbergen,et al.  The Quadratic Eigenvalue Problem , 2001, SIAM Rev..

[18]  P. Kosowski The relative error in the Pruess method for Sturm–Liouville problems , 2000 .

[19]  Alan L. Andrew,et al.  Correction of finite element estimates for Sturm-Liouville eigenvalues , 1986 .

[20]  Alan L. Andrew,et al.  Asymptotic correction of Numerov's eigenvalue estimates with natural boundary conditions , 2000 .