Rabi oscillations in a two-level atomic system with a pseudo-Hermitian Hamiltonian
暂无分享,去创建一个
[1] C. Bender,et al. Real Spectra in Non-Hermitian Hamiltonians Having PT Symmetry , 1997, physics/9712001.
[2] Pseudo-Hermiticity for a class of nondiagonalizable Hamiltonians , 2002, math-ph/0207009.
[3] T. Stehmann,et al. Observation of exceptional points in electronic circuits , 2003 .
[4] Murray Sargent,et al. Elements of Quantum Optics , 1991 .
[5] Exact PT-symmetry is equivalent to Hermiticity , 2003, quant-ph/0304080.
[6] A. Mostafazadeh. Pseudo-Hermiticity versus PT-symmetry III: Equivalence of pseudo-Hermiticity and the presence of antilinear symmetries , 2002, math-ph/0203005.
[7] N. Moiseyev,et al. Quantum theory of resonances: calculating energies, widths and cross-sections by complex scaling , 1998 .
[8] Dorje C Brody,et al. Complex extension of quantum mechanics. , 2002, Physical review letters.
[9] Z. Ahmed. Pseudo-Hermiticity of Hamiltonians under gauge-like transformation: real spectrum of non-Hermitian Hamiltonians , 2002 .
[10] A. Mostafazadeh. Pseudo-Hermiticity and Generalized PT- and CPT-Symmetries , 2002, math-ph/0209018.
[11] M. Berry,et al. Generalized PT symmetry and real spectra , 2002 .
[12] C-, PT- and CPT-invariance of pseudo-Hermitian Hamiltonians , 2003, quant-ph/0302141.
[13] Carl M. Bender,et al. Calculation of the hidden symmetry operator in -symmetric quantum mechanics , 2002 .
[14] C. cohen-tannoudji,et al. Atom-photon interactions , 1992 .
[15] P. Kurasov,et al. On the inverse scattering problem on branching graphs , 2002 .
[16] A. Galindo,et al. Quantum Mechanics I , 1990 .
[17] Dorje C. Brody,et al. Must a Hamiltonian be Hermitian , 2003, hep-th/0303005.
[18] A. Mostafazadeh. Pseudounitary operators and pseudounitary quantum dynamics , 2003, math-ph/0302050.