Gamma Positivity of the Excedance-Based Eulerian Polynomial in Positive Elements of Classical Weyl Groups

The Eulerian polynomial An(t) enumerating descents in Sn is known to be gamma positive for all n. When enumeration is done over the type B and type D Coxeter groups, the type B and type D Eulerian polynomials are also known to be gamma positive for all n. We consider An (t) and A − n (t), the polynomials which enumerate descents in the alternating group An and in Sn − An respectively. We show the following results about An (t) and A − n (t): both polynomials are gamma positive iff n ≡ 0, 1 (mod 4). When n ≡ 2, 3 (mod 4), both polynomials are not palindromic. When n ≡ 2 (mod 4), we show that two gamma positive summands add up to give An (t) and A − n (t). When n ≡ 3 (mod 4), we show that three gamma positive summands add up to give both An (t) and A − n (t). We show similar gamma positivity results about the descent based type B and type D Eulerian polynomials when enumeration is done over the positive elements in the respective Coxeter groups. We also show that the polynomials considered in this work are unimodal. Mathematics Subject Classifications: 05A05, 05A15

[1]  Francesco Brenti,et al.  q-Eulerian Polynomials Arising from Coxeter Groups , 1994, Eur. J. Comb..

[2]  Sivaramakrishnan Sivasubramanian Signed Excedance Enumeration in the Hyperoctahedral group , 2014, Electron. J. Comb..

[3]  Mirkó Visontai Some Remarks on the Joint Distribution of Descents and Inverse Descents , 2013, Electron. J. Comb..

[4]  Christos A. Athanasiadis Gamma-positivity in combinatorics and geometry , 2017, 1711.05983.

[5]  Hiranya Kishore Dey,et al.  Gamma Positivity of the Excedance-Based Eulerian Polynomial in Positive Elements of Classical Weyl Groups , 2018 .

[6]  Louis W. Shapiro,et al.  Runs, Slides and Moments , 1983 .

[7]  Petter Brändén,et al.  Actions on permutations and unimodality of descent polynomials , 2008, Eur. J. Comb..

[8]  Jiang Zeng,et al.  Symmetric unimodal expansions of excedances in colored permutations , 2014, Eur. J. Comb..

[9]  Roberto Mantaci Binomial Coefficients and Anti-exceedances of Even Permutations: A Combinatorial Proof , 1993, J. Comb. Theory, Ser. A.

[10]  ENUMERATING EXCEDANCES WITH LINEAR CHARACTERS IN CLASSICAL WEYL GROUPS , 2016 .

[11]  Zhicong Lin,et al.  Proof of Gessel ’ s γ-positivity conjecture , 2016 .

[12]  John R. Stembridge,et al.  Coxeter cones and their h-vectors , 2008 .

[13]  Chak-On Chow On certain combinatorial expansions of the Eulerian polynomials , 2008, Adv. Appl. Math..

[14]  Tero Harju,et al.  Combinatorics on Words , 2004 .

[15]  S. Tanimoto A STUDY OF EULERIAN NUMBERS FOR PERMUTATIONS IN THE ALTERNATING GROUP , 2006 .

[17]  Michelle L. Wachs,et al.  Gamma-positivity of variations of Eulerian polynomials , 2017, Journal of Combinatorics.

[18]  Eli Bagno,et al.  On Two-Sided Gamma-Positivity for Simple Permutations , 2018, Electron. J. Comb..

[19]  Heesung Shin,et al.  The symmetric and unimodal expansion of Eulerian polynomials via continued fractions , 2010, Eur. J. Comb..

[20]  P. Brändén Unimodality, log-concavity, real-rootedness and beyond , 2015 .

[21]  Y. Yeh,et al.  Alternatingly increasing property and bi-gamma-positivity of polynomials , 2019, 1907.13082.

[22]  Jacques Désarménien,et al.  The signed Eulerian numbers , 1992, Discret. Math..

[23]  Victor Reiner Descents and one-dimensional characters for classical Weyl groups , 1995, Discret. Math..

[24]  T. K. Petersen Enriched P-partitions and peak algebras , 2005, math/0508041.

[25]  M. Wachs,et al.  Eulerian quasisymmetric functions , 2008, 0812.0764.

[26]  J. Shaw Combinatory Analysis , 1917, Nature.

[27]  Yi Wang,et al.  A Group Action on Derangements , 2014, Electron. J. Comb..