Robust Estimation of High-Dimensional Mean Regression
暂无分享,去创建一个
[1] 秀俊 松井,et al. Statistics for High-Dimensional Data: Methods, Theory and Applications , 2014 .
[2] K. Alexander,et al. Rates of growth and sample moduli for weighted empirical processes indexed by sets , 1987 .
[3] Omar Rivasplata,et al. Subgaussian random variables : An expository note , 2012 .
[4] A. Belloni,et al. L1-Penalized Quantile Regression in High Dimensional Sparse Models , 2009, 0904.2931.
[5] Frederick R. Forst,et al. On robust estimation of the location parameter , 1980 .
[6] Cun-Hui Zhang. Nearly unbiased variable selection under minimax concave penalty , 2010, 1002.4734.
[7] P. Bickel,et al. SIMULTANEOUS ANALYSIS OF LASSO AND DANTZIG SELECTOR , 2008, 0801.1095.
[8] Ji Zhu,et al. L1-Norm Quantile Regression , 2008 .
[9] P. Bickel,et al. Covariance regularization by thresholding , 2009, 0901.3079.
[10] Yufeng Liu,et al. VARIABLE SELECTION IN QUANTILE REGRESSION , 2009 .
[11] Jianqing Fan,et al. Large covariance estimation by thresholding principal orthogonal complements , 2011, Journal of the Royal Statistical Society. Series B, Statistical methodology.
[12] B. Efron. Correlated z-Values and the Accuracy of Large-Scale Statistical Estimates , 2010, Journal of the American Statistical Association.
[13] P. Massart,et al. Concentration inequalities and model selection , 2007 .
[14] Chiang-Ching Huang,et al. Activated TLR Signaling in Atherosclerosis among Women with Lower Framingham Risk Score: The Multi-Ethnic Study of Atherosclerosis , 2011, PloS one.
[15] Lie Wang. The L1L1 penalized LAD estimator for high dimensional linear regression , 2013, J. Multivar. Anal..
[16] O. Catoni. Challenging the empirical mean and empirical variance: a deviation study , 2010, 1009.2048.
[17] Jianqing Fan,et al. Nonconcave Penalized Likelihood With NP-Dimensionality , 2009, IEEE Transactions on Information Theory.
[18] Martin J. Wainwright,et al. FASt global convergence of gradient methods for solving regularized M-estimation , 2012, 2012 IEEE Statistical Signal Processing Workshop (SSP).
[19] Y. Nesterov. Gradient methods for minimizing composite objective function , 2007 .
[20] Po-Ling Loh,et al. Regularized M-estimators with nonconvexity: statistical and algorithmic theory for local optima , 2013, J. Mach. Learn. Res..
[21] M. Talagrand,et al. Probability in Banach Spaces: Isoperimetry and Processes , 1991 .
[22] Martin J. Wainwright,et al. A unified framework for high-dimensional analysis of $M$-estimators with decomposable regularizers , 2009, NIPS.
[23] H. Zou,et al. Composite quantile regression and the oracle Model Selection Theory , 2008, 0806.2905.
[24] Martin J. Wainwright,et al. Minimax Rates of Estimation for High-Dimensional Linear Regression Over $\ell_q$ -Balls , 2009, IEEE Transactions on Information Theory.
[25] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[26] Jianqing Fan,et al. ADAPTIVE ROBUST VARIABLE SELECTION. , 2012, Annals of statistics.
[27] Martin J. Wainwright,et al. Fast global convergence of gradient methods for high-dimensional statistical recovery , 2011, ArXiv.
[28] Yoram Singer,et al. Efficient projections onto the l1-ball for learning in high dimensions , 2008, ICML '08.
[29] Jianqing Fan,et al. Journal of the American Statistical Association Estimating False Discovery Proportion under Arbitrary Covariance Dependence Estimating False Discovery Proportion under Arbitrary Covariance Dependence , 2022 .
[30] R. Engle. Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .
[31] S. Geer. Empirical Processes in M-Estimation , 2000 .
[32] Jianqing Fan,et al. Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .