Fluid heterogeneity detection based on the asymptotic distribution of the time-averaged mean squared displacement in single particle tracking experiments

A tracer particle is called anomalously diffusive if its mean squared displacement grows approximately as σ 2 t α as a function of time t for some constant σ 2, where the diffusion exponent satisfies α ≠ 1. In this article, we use recent results on the asymptotic distribution of the time-averaged mean squared displacement [20] to construct statistical tests for detecting physical heterogeneity in viscoelastic fluid samples starting from one or multiple observed anomalously diffusive paths. The methods are asymptotically valid for the range 0 < α < 3/2 and involve a mathematical characterization of time-averaged mean squared displacement bias and the effect of correlated disturbance errors. The assumptions on particle motion cover a broad family of fractional Gaussian processes, including fractional Brownian motion and many fractional instances of the generalized Langevin equation framework. We apply the proposed methods in experimental data from treated P. aeruginosa biofilms generated by the collaboration of the Hill and Schoenfisch Labs at UNC-Chapel Hill.

[1]  D. Grebenkov,et al.  Hydrodynamic and subdiffusive motion of tracers in a viscoelastic medium. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  D. Dean,et al.  Distribution of the least-squares estimators of a single Brownian trajectory diffusion coefficient , 2013, 1301.4374.

[3]  John Fricks,et al.  On the wavelet-based simulation of anomalous diffusion , 2012, 1202.4437.

[4]  C. Kervrann,et al.  Statistical analysis of particle trajectories in living cells. , 2017, Physical review. E.

[5]  Igor M. Sokolov,et al.  Statistics and the single molecule , 2008 .

[6]  M. Rosenblatt Independence and Dependence , 1961 .

[7]  Krzysztof Burnecki,et al.  Statistical modelling of subdiffusive dynamics in the cytoplasm of living cells: A FARIMA approach , 2012 .

[8]  G. A. Blab,et al.  Single nanoparticle photothermal tracking (SNaPT) of 5-nm gold beads in live cells. , 2006, Biophysical journal.

[9]  Mason,et al.  Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids. , 1995, Physical review letters.

[10]  Ronald Christensen,et al.  Plane Answers to Complex Questions , 1987, Springer Texts in Statistics.

[11]  Paul C. Blainey,et al.  Optimal estimation of diffusion coefficients from single-particle trajectories. , 2013 .

[12]  Scott A. McKinley,et al.  Maximum likelihood estimation for single particle, passive microrheology data with drift , 2015, 1509.03261.

[13]  Samuel K. Lai,et al.  Altering Mucus Rheology to “Solidify” Human Mucus at the Nanoscale , 2009, PloS one.

[14]  Ralf Metzler,et al.  Analysis of short subdiffusive time series: scatter of the time-averaged mean-squared displacement , 2010 .

[15]  D. Grebenkov,et al.  Optical trapping microrheology in cultured human cells , 2012, The European Physical Journal E.

[16]  Large deviations of time-averaged statistics for Gaussian processes , 2018, Statistics & Probability Letters.

[17]  Scott A. McKinley,et al.  Statistical challenges in microrheology , 2012, 1201.5984.

[18]  H. Brismar,et al.  Tracking single lipase molecules on a trimyristin substrate surface using quantum dots. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[19]  Ralf Metzler,et al.  Noisy continuous time random walks. , 2013, The Journal of chemical physics.

[20]  M. Ledoux The concentration of measure phenomenon , 2001 .

[21]  Ralf Metzler,et al.  Single particle tracking in systems showing anomalous diffusion: the role of weak ergodicity breaking. , 2010, Physical chemistry chemical physics : PCCP.

[22]  M. Schoenfisch,et al.  Disruption and eradication of P. aeruginosa biofilms using nitric oxide-releasing chitosan oligosaccharides , 2015, Biofouling.

[23]  Russell M. Taylor,et al.  A physical linkage between cystic fibrosis airway surface dehydration and Pseudomonas aeruginosa biofilms , 2006, Proceedings of the National Academy of Sciences.

[24]  R. Zwanzig Nonequilibrium statistical mechanics , 2001, Physics Subject Headings (PhySH).

[25]  X. Xie,et al.  Generalized Langevin equation with fractional Gaussian noise: subdiffusion within a single protein molecule. , 2004, Physical review letters.

[26]  Eric Moulines,et al.  A wavelet whittle estimator of the memory parameter of a nonstationary Gaussian time series , 2008 .

[27]  D. Grebenkov,et al.  Time-averaged MSD of Brownian motion , 2012, 1205.2100.

[28]  R. Metzler,et al.  Strange kinetics of single molecules in living cells , 2012 .

[29]  Ronald Christensen Plane Answers to Complex Questions , 1987 .

[30]  B. Lindner,et al.  Distributions of diffusion measures from a local mean-square displacement analysis. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  X. Guyon,et al.  Convergence en loi des H-variations d'un processus gaussien stationnaire sur R , 1989 .

[32]  D. Grebenkov Optimal and suboptimal quadratic forms for noncentered Gaussian processes. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  Andrey G. Cherstvy,et al.  Anomalous, non-Gaussian tracer diffusion in crowded two-dimensional environments , 2015, 1508.02029.

[34]  Krzysztof Burnecki,et al.  FARIMA processes with application to biophysical data , 2012 .

[35]  Scott A. McKinley,et al.  A Biophysical Basis for Mucus Solids Concentration as a Candidate Biomarker for Airways Disease , 2014, PloS one.

[36]  D. Surgailis,et al.  A central limit theorem for quadratic forms in strongly dependent linear variables and its application to asymptotical normality of Whittle's estimate , 1990 .

[37]  R. Vale,et al.  One-dimensional diffusion of microtubules bound to flagellar dynein , 1989, Cell.

[38]  E. Barkai,et al.  Ergodic properties of fractional Brownian-Langevin motion. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  Michael D. Mason,et al.  Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. , 2006, Biophysical journal.

[40]  A. Berglund Statistics of camera-based single-particle tracking. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  Antoine M. van Oijen,et al.  Dancing on DNA: kinetic aspects of search processes on DNA. , 2011, Chemphyschem : a European journal of chemical physics and physical chemistry.

[42]  Richard A. Davis,et al.  The Rosenblatt Process , 2011 .

[43]  D. Grebenkov Probability distribution of the time-averaged mean-square displacement of a Gaussian process. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[44]  P. Major Limit theorems for non-linear functionals of Gaussian sequences , 1981 .

[45]  Michel Loève,et al.  Probability Theory I , 1977 .

[46]  Eric Moulines,et al.  Central limit theorem for the robust log-regression wavelet estimation of the memory parameter in the Gaussian semi-parametric context , 2007 .

[47]  Gábor Lugosi,et al.  Concentration Inequalities - A Nonasymptotic Theory of Independence , 2013, Concentration Inequalities.

[48]  Patrick Cheridito,et al.  Fractional Ornstein-Uhlenbeck processes , 2003 .

[49]  Liudas Giraitis,et al.  CLT and other limit theorems for functionals of Gaussian processes , 1985 .

[50]  Andrey G. Cherstvy,et al.  Non-Brownian diffusion in lipid membranes: Experiments and simulations. , 2016, Biochimica et biophysica acta.

[51]  François Roueff,et al.  On the Spectral Density of the Wavelet Coefficients of Long‐Memory Time Series with Application to the Log‐Regression Estimation of the Memory Parameter , 2005, math/0512635.

[52]  M. Schoenfisch,et al.  Role of Nitric Oxide-Releasing Chitosan Oligosaccharides on Mucus Viscoelasticity. , 2017, ACS biomaterials science & engineering.

[53]  G. Didier,et al.  Multivariate Hadamard self-similarity: testing fractal connectivity , 2017, 1701.04366.

[54]  S. C. Kou,et al.  Stochastic modeling in nanoscale biophysics: Subdiffusion within proteins , 2008, 0807.3910.

[55]  G. A. Pavliotis,et al.  Asymptotic analysis for the generalized Langevin equation , 2010, 1003.4203.

[56]  김종덕,et al.  Interactive. , 1996, Nursing older people.

[57]  D. Holcman,et al.  Statistical Methods for Large Ensembles of Super-Resolution Stochastic Single Particle Trajectories in Cell Biology , 2017 .

[58]  Agnieszka Wyłomańska,et al.  Statistical properties of the anomalous scaling exponent estimator based on time-averaged mean-square displacement. , 2017, Physical review. E.

[59]  Igor M. Sokolov,et al.  A toolbox for determining subdiffusive mechanisms , 2015 .

[60]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[61]  Scott A. McKinley,et al.  Anomalous Diffusion and the Generalized Langevin Equation , 2017, SIAM J. Math. Anal..

[62]  K. Braeckmans,et al.  Single particle tracking , 2010 .

[63]  W E Moerner,et al.  Diffusion of lipid-like single-molecule fluorophores in the cell membrane. , 2006, The journal of physical chemistry. B.

[64]  D. Wirtz,et al.  Enhanced Viscoelasticity of Human Cystic Fibrotic Sputum Correlates with Increasing Microheterogeneity in Particle Transport* , 2003, Journal of Biological Chemistry.

[65]  M. Taqqu,et al.  Properties and numerical evaluation of the Rosenblatt distribution , 2013, 1307.5990.

[66]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[67]  M. Taqqu Weak convergence to fractional brownian motion and to the rosenblatt process , 1975, Advances in Applied Probability.

[68]  Patrice Abry,et al.  A Wavelet-Based Joint Estimator of the Parameters of Long-Range Dependence , 1999, IEEE Trans. Inf. Theory.

[69]  Denis Boyer,et al.  Optimal estimates of the diffusion coefficient of a single Brownian trajectory. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[70]  Mark M. Meerschaert,et al.  Correlated continuous time random walks , 2008, 0809.1612.

[71]  D A Weitz,et al.  Investigating the microenvironments of inhomogeneous soft materials with multiple particle tracking. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[72]  Eric C Greene,et al.  Visualizing one-dimensional diffusion of proteins along DNA , 2008, Nature Structural &Molecular Biology.

[73]  E. Katayama,et al.  One-dimensional Brownian motion of charged nanoparticles along microtubules: a model system for weak binding interactions. , 2010, Biophysical journal.

[74]  Ralf Metzler,et al.  Velocity and displacement correlation functions for fractional generalized Langevin equations , 2012 .

[75]  P. Massart,et al.  Adaptive estimation of a quadratic functional by model selection , 2000 .

[76]  X. Michalet,et al.  Optimal diffusion coefficient estimation in single-particle tracking. , 2012 .

[77]  L. Isserlis,et al.  ON CERTAIN PROBABLE ERRORS AND CORRELATION COEFFICIENTS OF MULTIPLE FREQUENCY DISTRIBUTIONS WITH SKEW REGRESSION , 1916 .

[78]  D. Grebenkov Time-averaged quadratic functionals of a Gaussian process. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[79]  Krzysztof Burnecki,et al.  Estimating the anomalous diffusion exponent for single particle tracking data with measurement errors - An alternative approach , 2015, Scientific Reports.

[80]  Jonathon Howard,et al.  The depolymerizing kinesin MCAK uses lattice diffusion to rapidly target microtubule ends , 2006, Nature.

[81]  Krzysztof Burnecki,et al.  Guidelines for the Fitting of Anomalous Diffusion Mean Square Displacement Graphs from Single Particle Tracking Experiments , 2015, PloS one.

[82]  Yuval Garini,et al.  Improved estimation of anomalous diffusion exponents in single-particle tracking experiments. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[83]  Junghae Suh,et al.  Real-time multiple-particle tracking: applications to drug and gene delivery. , 2005, Advanced drug delivery reviews.

[84]  Scott A. McKinley,et al.  Model Comparison and Assessment for Single Particle Tracking in Biological Fluids , 2014, 1407.5962.

[85]  Mark M. Meerschaert,et al.  Limit theorems for continuous-time random walks with infinite mean waiting times , 2004, Journal of Applied Probability.

[86]  Vladas Pipiras,et al.  Long-Range Dependence and Self-Similarity , 2017 .

[87]  R. Dobrushin,et al.  Non-central limit theorems for non-linear functional of Gaussian fields , 1979 .

[88]  Gerhard J Schütz,et al.  Tracking single molecules in the live cell plasma membrane-Do's and Don't's. , 2008, Methods.

[89]  Prakasa Rao,et al.  Statistical Inference for Fractional Diffusion Processes: Rao/Statistical Inference for Fractional Diffusion Processes , 2010 .

[90]  Levine,et al.  One- and two-particle microrheology , 2000, Physical review letters.

[91]  K. Ribbeck,et al.  Characterization of particle translocation through mucin hydrogels. , 2010, Biophysical journal.

[92]  Dimitrios Vavylonis,et al.  Interactive, computer-assisted tracking of speckle trajectories in fluorescence microscopy: application to actin polymerization and membrane fusion. , 2011, Biophysical journal.

[93]  M. Taqqu Convergence of integrated processes of arbitrary Hermite rank , 1979 .

[94]  Abubakr Gafar Abdalla,et al.  Probability Theory , 2017, Encyclopedia of GIS.

[95]  Scott A. McKinley,et al.  Model Comparison and Assessment for Single Particle Tracking in Biological Fluids , 2014, 1407.5962.

[96]  Weihua Deng,et al.  ANALYSIS OF SINGLE PARTICLE TRAJECTORIES: FROM NORMAL TO ANOMALOUS DIFFUSION ∗ , 2009 .

[97]  Gustavo Didier,et al.  The Asymptotic Distribution of The Pathwise Mean Squared Displacement in Single Particle Tracking Experiments , 2015, 1507.06567.

[98]  M. Saxton Anomalous diffusion due to obstacles: a Monte Carlo study. , 1994, Biophysical journal.

[99]  M. Saxton Anomalous diffusion due to binding: a Monte Carlo study. , 1996, Biophysical journal.

[100]  H. Qian,et al.  Single particle tracking. Analysis of diffusion and flow in two-dimensional systems. , 1991, Biophysical journal.

[101]  J. Marko,et al.  How do site-specific DNA-binding proteins find their targets? , 2004, Nucleic acids research.

[102]  Krzysztof Burnecki,et al.  Universal algorithm for identification of fractional Brownian motion. A case of telomere subdiffusion. , 2012, Biophysical journal.