Generalized Fermat-Mersenne number theoretic transform
暂无分享,去创建一个
[1] L. Dickson. History of the Theory of Numbers , 1924, Nature.
[2] E. Wright,et al. An Introduction to the Theory of Numbers , 1939 .
[3] Raphael M. Robinson,et al. A report on primes of the form ⋅2ⁿ+1 and on factors of Fermat numbers , 1958 .
[4] Anatolij A. Karatsuba,et al. Multiplication of Multidigit Numbers on Automata , 1963 .
[5] R. Singleton. An algorithm for computing the mixed radix fast Fourier transform , 1969 .
[6] Charles M. Rader,et al. Discrete Convolutions via Mersenne Transrorms , 1972, IEEE Transactions on Computers.
[7] C. Burrus,et al. Fast Convolution using fermat number transforms with applications to digital filtering , 1974 .
[8] S. Golomb. Properties of the sequences 3⋅2ⁿ+1 , 1976 .
[9] S. Winograd. On computing the Discrete Fourier Transform. , 1976, Proceedings of the National Academy of Sciences of the United States of America.
[10] L. Leibowitz. A simplified binary arithmetic for the Fermat number transform , 1976 .
[11] Trieu-Kien Truong,et al. Fast number-theoretic transforms for digital filtering , 1976 .
[12] Henri J. Nussbaumer. Digital filtering using complex Mersenne transforms , 1976 .
[13] J. Pollard. Implementation of number-theoretic transforms , 1976 .
[14] H. Nussbaumer. Digital filtering using pseudo fermat number transforms , 1977 .
[15] C. Jesshope,et al. The solution of elliptic partial differential equations using number theoretic transforms with application to narrow or limited computer hardware , 1977 .
[16] I. S. Reed,et al. Integer Convolutions over the Finite Field $GF( {3 \cdot 2^n + 1} )$ , 1977 .
[17] Trieu-Kien Truong,et al. The fast decoding of Reed-Solomon codes using Fermat transforms (Corresp.) , 1978, IEEE Trans. Inf. Theory.
[18] Anastasios N. Venetsanopoulos,et al. The generalized discrete Fourier transform in rings of algebraic integers , 1980 .
[19] J. Martens,et al. Convolutions of long integer sequences by means of number theoretic transforms over residue class polynomial rings , 1983 .
[20] Jean-Bernard Martens. Number theoretic transforms for the calculation of convolutions , 1983 .
[21] Jean-Bernard Martens,et al. Convolution using a conjugate symmetry property for number theoretic transforms over rings of regular integers , 1983 .
[22] Jean-Bernard Martens,et al. Two-dimensional convolutions by means of number theoretic transforms over residue class polynomial rings , 1984 .
[23] J. Martens. Recursive cyclotomic factorization--A new algorithm for calculating the discrete Fourier transform , 1984 .
[24] David Y. Y. Yun,et al. Binary paradigm and systolic array implementation for residue arithmetic , 1985, 1985 IEEE 7th Symposium on Computer Arithmetic (ARITH).
[25] Jae Lee,et al. Realization of adaptive digital filters using the Fermat number transform , 1985, IEEE Trans. Acoust. Speech Signal Process..
[26] Said Boussakta,et al. Fast multidimensional discrete Hartley transform using Fermat number transform , 1988 .
[27] Gabriele Steidl,et al. Number-theoretic Transforms in Rings of Cyclotomic Integers , 1988, J. Inf. Process. Cybern..
[28] Weiping Li,et al. FIR filtering by the modified Fermat number transform , 1990, IEEE Trans. Acoust. Speech Signal Process..
[29] Number theoretic fast algorithms for bilinear and other generalized transformations , 1990 .
[30] Samuel C. Lee,et al. A new approach to solve the sequence-length constraint problem in circular convolution using number theoretic transform , 1991, IEEE Trans. Signal Process..