Utilizing nonlinear phenomena to locate grazing in the constrained motion of a cantilever beam

[1]  José Manoel Balthazar,et al.  Suppressing grazing chaos in impacting system by structural nonlinearity , 2008 .

[2]  H. Dankowicz Nonlinear dynamics as an essential tool for non-destructive characterization of soft nanostructures using tapping-mode atomic force microscopy , 2006, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[3]  Ni Qiao,et al.  Bifurcations and chaos in a forced cantilever system with impacts , 2006 .

[4]  S. Solares,et al.  Influence of the carbon nanotube probe tilt angle on the effective probe stiffness and image quality in tapping-mode atomic force microscopy. , 2005, The journal of physical chemistry. B.

[5]  Harry Dankowicz,et al.  Local analysis of co-dimension-one and co-dimension-two grazing bifurcations in impact microactuators , 2005 .

[6]  Marian Wiercigroch,et al.  Cumulative effect of structural nonlinearities: chaotic dynamics of cantilever beam system with impacts , 2005 .

[7]  Balakumar Balachandran,et al.  Dynamics of an Elastic Structure Excited by Harmonic and Aharmonic Impactor Motions , 2003 .

[8]  K. D. Murphy,et al.  Grazing instabilities and post-bifurcation behavior in an impacting string. , 2002, The Journal of the Acoustical Society of America.

[9]  J. Molenaar,et al.  Mappings of grazing-impact oscillators , 2001 .

[10]  Molenaar,et al.  Grazing impact oscillations , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[11]  S. Akita,et al.  Atomic Force Microscopy of Single-Walled Carbon Nanotubes Using Carbon Nanotube Tip , 2000 .

[12]  Lawrence N. Virgin,et al.  Grazing bifurcations and basins of attraction in an impact-friction oscillator , 1999 .

[13]  Marian Wiercigroch,et al.  Experimental Study of a Symmetrical Piecewise Base-Excited Oscillator , 1998 .

[14]  D. Sarid,et al.  Kinetics of lossy grazing impact oscillators , 1998 .

[15]  J. Molenaar,et al.  The universal behaviour of oscillators that undergo low velocity impacts , 1997, 1997 1st International Conference, Control of Oscillations and Chaos Proceedings (Cat. No.97TH8329).

[16]  F. Peterka,et al.  Bifurcations and transition phenomena in an impact oscillator , 1996 .

[17]  A. Nordmark,et al.  Experimental investigation of some consequences of low velocity impacts in the chaotic dynamics of a mechanical system , 1994, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[18]  Balakumar Balachandran,et al.  Experimental Verification of the Importance of The Nonlinear Curvature in the Response of a Cantilever Beam , 1994 .

[19]  M. Wiercigroch Bifurcation analysis of harmonically excited linear oscillator with clearance , 1994 .

[20]  F. Peterka,et al.  Transition to chaotic motion in mechanical systems with impacts , 1992 .

[21]  P. Holmes,et al.  A periodically forced piecewise linear oscillator , 1983 .

[22]  S. Solares,et al.  Utilizing Period-Doubling Bifurcations to Locate Grazing in Atomic Force Microscopy , 2008 .

[23]  Harry Dankowicz,et al.  Control of impact microactuators for precise positioning , 2006 .

[24]  N. Jalili,et al.  Nonlinear Dynamic Analysis and Chaotic Behavior in Atomic Force Microscopy , 2005 .

[25]  A. Nayfeh,et al.  Applied nonlinear dynamics : analytical, computational, and experimental methods , 1995 .

[26]  A. H. Nayfeh,et al.  Nonlinear motions of beam-mass structure , 1990 .