Methodology for tidal turbine representation in ocean circulation model

The present method proposes the use and adaptation of ocean circulation models as an assessment tool framework for tidal current turbine (TCT) array layout optimization. By adapting both momentum and turbulence transport equations of an existing model, the present TCT representation method is proposed to extend the actuator disc concept to 3-D large-scale ocean circulation models. Through the reproduction of experimental flume tests and grid dependency tests, this method has shown its numerical coherence as well as its ability to simulate accurately both momentum and turbulent turbine-induced perturbations in both near and far wakes in a relatively short period of computation time. Consequently the present TCT representation method is a very promising basis for the development of a TCT array layout optimization tool.

[1]  I. Owen,et al.  Experimental and computational analysis of a model horizontal axis tidal turbine , 2009 .

[2]  L. E. Myers,et al.  Experimental analysis of the flow field around horizontal axis tidal turbines by use of scale mesh disk rotor simulators , 2010 .

[3]  Simon W. Funke,et al.  Tidal turbine array optimisation using the adjoint approach , 2013, ArXiv.

[4]  Hans Burchard,et al.  Second-order turbulence closure models for geophysical boundary layers. A review of recent work , 2005 .

[5]  C. Garrett,et al.  Tidal current energy assessment for Johnstone Strait, Vancouver Island , 2007 .

[6]  Ian Bryden,et al.  Choosing and evaluating sites for tidal current development , 2004 .

[7]  A. Bahaj,et al.  Comparison between CFD simulations and experiments for predicting the far wake of horizontal axis tidal turbines , 2010 .

[8]  Christophe Sanz A Note on k - ε Modelling of Vegetation Canopy Air-Flows , 2003 .

[9]  L. Kantha,et al.  Numerical models of oceans and oceanic processes , 2000 .

[10]  Jens Nørkær Sørensen,et al.  Numerical Modeling of Wind Turbine Wakes , 2002 .

[11]  C. Masson,et al.  An extended k–ε model for turbulent flow through horizontal-axis wind turbines , 2008 .

[12]  M. L. Buhl,et al.  New Empirical Relationship between Thrust Coefficient and Induction Factor for the Turbulent Windmill State , 2005 .

[13]  K. Thyng,et al.  A Three-dimensional Hydrodynamic Model of Inland Marine Waters of Washington State , United States , for Tidal Resource and Environmental Impact Assessment , 2009 .

[14]  Ian Bryden,et al.  Tidal current energy extraction: Hydrodynamic resource characteristics , 2006 .

[15]  K. Hutter,et al.  Extending the k- ω turbulence model towards oceanic applications , 2003 .

[16]  A. Bahaj,et al.  Tidal energy resource assessment for tidal stream generators , 2007 .

[17]  I. Bryden,et al.  Laboratory-scale simulation of energy extraction from tidal currents , 2008 .

[18]  M. S. Dubovikov,et al.  Ocean Turbulence I: One-Point Closure Model Momentum and Heat Vertical Diffusivities , 2001 .

[19]  Glenn S. Carter,et al.  Open boundary conditions for regional tidal simulations , 2007 .

[20]  C. Garrett,et al.  The power potential of tidal currents in channels , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[21]  Dale B. Haidvogel,et al.  Numerical Ocean Circulation Modeling , 1999 .

[22]  H. Burchard,et al.  A generic length-scale equation for geophysical turbulence models , 2003 .

[23]  Grégory Pinon,et al.  Experimental study to determine flow characteristic effects on marine current turbine behaviour , 2009 .

[24]  L. E. Myers,et al.  Experimental analysis of the local flow effects around single row tidal turbine arrays , 2010 .

[25]  Niels N. Sørensen,et al.  Actuator Disc Model Using a Modified Rhie-Chow/SIMPLE Pressure Correction Algorithm: Comparison with Analytical Solutions , 2008 .

[26]  Mats Leijon,et al.  Numerical modeling of a river site for in-stream energy converters , 2009 .

[27]  Alexander F. Shchepetkin,et al.  The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model , 2005 .

[28]  Ian Bryden,et al.  ME1—marine energy extraction: tidal resource analysis , 2006 .

[29]  Ronald D. Haynes,et al.  Assessment of tidal current energy in the Minas Passage, Bay of Fundy , 2008 .

[30]  Ervin Bossanyi,et al.  Wind Energy Handbook , 2001 .

[31]  M. Oldfield,et al.  Modelling tidal energy extraction in a depth-averaged coastal domain , 2010 .

[32]  I. Bryden,et al.  How much energy can be extracted from moving water with a free surface: a question of importance in the field of tidal current energy? , 2007 .