A multicentre longitudinal study of flortaucipir (18F) in normal ageing, mild cognitive impairment and Alzheimer’s disease dementia

Using flortaucipir, Pontecorvo et al. reveal an increase in cortical tau over 18 months in Aβ+ but not Aβ- subjects, and an association between baseline tau and the magnitude of changes in tau and cognitive performance. The abundance and distribution of tau may influence both tau spreading and cognitive decline.

[1]  Bruce Fischl,et al.  FreeSurfer , 2012, NeuroImage.

[2]  Karl J. Friston,et al.  Statistical parametric mapping , 2013 .

[3]  C. Jack,et al.  Tracking pathophysiological processes in Alzheimer's disease: an updated hypothetical model of dynamic biomarkers , 2013, The Lancet Neurology.

[4]  Sterling C. Johnson,et al.  In Vivo Characterization and Quantification of Neurofibrillary Tau PET Radioligand 18F-MK-6240 in Humans from Alzheimer Disease Dementia to Young Controls , 2018, The Journal of Nuclear Medicine.

[5]  Hanna Cho,et al.  Tau PET in Alzheimer disease and mild cognitive impairment , 2016, Neurology.

[6]  W. Jagust,et al.  Dynamic PET Measures of Tau Accumulation in Cognitively Normal Older Adults and Alzheimer’s Disease Patients Measured Using [18F] THK-5351 , 2016, PloS one.

[7]  Paul Maruff,et al.  β-amyloid imaging and memory in non-demented individuals: evidence for preclinical Alzheimer's disease , 2007 .

[8]  Keith A. Johnson,et al.  Florbetapir (F18-AV-45) PET to assess amyloid burden in Alzheimer's disease dementia, mild cognitive impairment, and normal aging , 2013, Alzheimer's & Dementia.

[9]  Christopher G Schwarz,et al.  Longitudinal tau PET in ageing and Alzheimer’s disease , 2018, Brain : a journal of neurology.

[10]  M. Mintun,et al.  Test–Retest Reproducibility for the Tau PET Imaging Agent Flortaucipir F 18 , 2017, The Journal of Nuclear Medicine.

[11]  P. Snyder,et al.  Cognitive impairment and decline in cognitively normal older adults with high amyloid-β: A meta-analysis , 2016, Alzheimer's & dementia.

[12]  J. Morris,et al.  The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer's disease , 2011, Alzheimer's & Dementia.

[13]  Daniel R. Schonhaut,et al.  PET Imaging of Tau Deposition in the Aging Human Brain , 2016, Neuron.

[14]  Keith A. Johnson,et al.  18F‐flortaucipir tau positron emission tomography distinguishes established progressive supranuclear palsy from controls and Parkinson disease: A multicenter study , 2017, Annals of neurology.

[15]  Hanna Cho,et al.  In vivo cortical spreading pattern of tau and amyloid in the Alzheimer disease spectrum , 2016, Annals of neurology.

[16]  M. Mintun,et al.  Effectiveness of Florbetapir PET Imaging in Changing Patient Management , 2017, Dementia and Geriatric Cognitive Disorders.

[17]  H. Braak,et al.  Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry , 2006, Acta Neuropathologica.

[18]  C. Jack,et al.  Transition rates between amyloid and neurodegeneration biomarker states and to dementia: a population-based, longitudinal cohort study , 2016, The Lancet Neurology.

[19]  J. Morris,et al.  Tangles and plaques in nondemented aging and “preclinical” Alzheimer's disease , 1999, Annals of neurology.

[20]  Rik Ossenkoppele,et al.  Distinct 18F‐AV‐1451 tau PET retention patterns in early‐ and late‐onset Alzheimer's disease , 2017, Brain : a journal of neurology.

[21]  James Robert Brašić,et al.  Characterization of 3 Novel Tau Radiopharmaceuticals, 11C-RO-963, 11C-RO-643, and 18F-RO-948, in Healthy Controls and in Alzheimer Subjects , 2018, The Journal of Nuclear Medicine.

[22]  Daniel R. Schonhaut,et al.  Tau PET patterns mirror clinical and neuroanatomical variability in Alzheimer's disease. , 2016, Brain : a journal of neurology.

[23]  Min-Ying Su,et al.  Early clinical PET imaging results with the novel PHF-tau radioligand [F18]-T808. , 2014, Journal of Alzheimer's disease : JAD.

[24]  Keith A. Johnson,et al.  Tau Positron Emission Tomographic Imaging in the Lewy Body Diseases. , 2016, JAMA neurology.

[25]  Bradford C. Dickerson,et al.  Tau PET imaging in aging and early Alzheimer's disease , 2015 .

[26]  J. Morrison,et al.  Regional distribution of neurofibrillary tangles and senile plaques in the cerebral cortex of elderly patients: a quantitative evaluation of a one-year autopsy population from a geriatric hospital. , 1994, Cerebral cortex.

[27]  Robert A. Dean,et al.  Phase 3 solanezumab trials: Secondary outcomes in mild Alzheimer's disease patients , 2016, Alzheimer's & Dementia.

[28]  Ranjan Duara,et al.  Phase 3 trial of flutemetamol labeled with radioactive fluorine 18 imaging and neuritic plaque density. , 2015, JAMA neurology.

[29]  Christopher J. Owen,et al.  Tau and Ab imaging, CSF measures, and cognition in Alzheimer’s disease , 2016 .

[30]  W. Vanduffel,et al.  Preclinical Evaluation of 18F-JNJ64349311, a Novel PET Tracer for Tau Imaging , 2017, The Journal of Nuclear Medicine.

[31]  A. Joshi,et al.  Regional profiles of the candidate tau PET ligand 18F-AV-1451 recapitulate key features of Braak histopathological stages. , 2016, Brain : a journal of neurology.

[32]  J. Schneider,et al.  Mild cognitive impairment is related to Alzheimer disease pathology and cerebral infarctions , 2005, Neurology.

[33]  M. Mintun,et al.  Quantitation of PET signal as an adjunct to visual interpretation of florbetapir imaging , 2017, European Journal of Nuclear Medicine and Molecular Imaging.

[34]  Naruhiko Sahara,et al.  Propagation of Tau Pathology in a Model of Early Alzheimer's Disease , 2012, Neuron.

[35]  J. Trojanowski,et al.  Imaging of Tau Pathology in a Tauopathy Mouse Model and in Alzheimer Patients Compared to Normal Controls , 2013, Neuron.

[36]  Daniel W. McKeel,et al.  Clinicopathologic studies in cognitively healthy aging and Alzheimer disease , 1998 .

[37]  D. Bennett,et al.  A 2-process model for neuropathology of Alzheimer's disease , 2014, Neurobiology of Aging.

[38]  Yi Su,et al.  Tau and Aβ imaging, CSF measures, and cognition in Alzheimer's disease , 2016, Science Translational Medicine.

[39]  Andrea Bergmann,et al.  Statistical Parametric Mapping The Analysis Of Functional Brain Images , 2016 .

[40]  R. Coleman,et al.  Cerebral PET with florbetapir compared with neuropathology at autopsy for detection of neuritic amyloid-β plaques: a prospective cohort study , 2012, The Lancet Neurology.

[41]  J. Price,et al.  Clinicopathologic studies in cognitively healthy aging and Alzheimer's disease: relation of histologic markers to dementia severity, age, sex, and apolipoprotein E genotype. , 1998, Archives of neurology.

[42]  Peter T Nelson,et al.  Clinicopathologic Correlations in a Large Alzheimer Disease Center Autopsy Cohort: Neuritic Plaques and Neurofibrillary Tangles "Do Count" When Staging Disease Severity , 2007, Journal of neuropathology and experimental neurology.

[43]  J. Trojanowski,et al.  Multimodal evaluation demonstrates in vivo 18F-AV-1451 uptake in autopsy-confirmed corticobasal degeneration , 2016, Acta Neuropathologica.

[44]  Talakad G. Lohith,et al.  Preclinical Characterization of 18F-MK-6240, a Promising PET Tracer for In Vivo Quantification of Human Neurofibrillary Tangles , 2016, The Journal of Nuclear Medicine.

[45]  H. Braak,et al.  Neuropathology and Cognitive Impairment in Alzheimer Disease: A Complex but Coherent Relationship , 2009, Journal of neuropathology and experimental neurology.

[46]  M. Mintun,et al.  Flortaucipir F 18 Quantitation Using Parametric Estimation of Reference Signal Intensity , 2017, The Journal of Nuclear Medicine.

[47]  M. Mintun,et al.  Relationships between flortaucipir PET tau binding and amyloid burden, clinical diagnosis, age and cognition , 2017, Brain : a journal of neurology.

[48]  D. Mash,et al.  Neuropathological and neuropsychological changes in "normal" aging: evidence for preclinical Alzheimer disease in cognitively normal individuals. , 1998, Journal of neuropathology and experimental neurology.

[49]  A. Nordberg,et al.  Tau PET imaging: present and future directions , 2017, Molecular Neurodegeneration.

[50]  C. Jack,et al.  [18F]AV-1451 tau-PET uptake does correlate with quantitatively measured 4R-tau burden in autopsy-confirmed corticobasal degeneration , 2016, Acta Neuropathologica.

[51]  Hanna Cho,et al.  Excessive tau accumulation in the parieto-occipital cortex characterizes early-onset Alzheimer's disease , 2017, Neurobiology of Aging.

[52]  George Jewell,et al.  Florbetapir F 18 amyloid PET and 36-month cognitive decline:a prospective multicenter study , 2014, Molecular Psychiatry.

[53]  John Seibyl,et al.  Florbetaben PET imaging to detect amyloid beta plaques in Alzheimer's disease: Phase 3 study , 2015, Alzheimer's & Dementia.

[54]  D. Selkoe The molecular pathology of Alzheimer's disease , 1991, Neuron.

[55]  Keith A. Johnson,et al.  Pathological correlations of [F‐18]‐AV‐1451 imaging in non‐alzheimer tauopathies , 2017, Annals of neurology.

[56]  J. Schneider,et al.  National Institute on Aging–Alzheimer's Association guidelines for the neuropathologic assessment of Alzheimer's disease , 2012, Alzheimer's & Dementia.

[57]  Menno P. Witter,et al.  Trans-Synaptic Spread of Tau Pathology In Vivo , 2012, PloS one.

[58]  P. Snyder,et al.  Cognitive impairment and decline in cognitively normal older adults with high amyloid-b: A meta-analysis , 2020 .

[59]  D. Louis Collins,et al.  Unbiased average age-appropriate atlases for pediatric studies , 2011, NeuroImage.

[60]  Brian J Cummings,et al.  β-amyloid deposition and other measures of neuropathology predict cognitive status in Alzheimer's disease , 1996, Neurobiology of Aging.

[61]  David T. Jones,et al.  AV‐1451 tau and β‐amyloid positron emission tomography imaging in dementia with Lewy bodies , 2016, Annals of neurology.

[62]  Nick C Fox,et al.  The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer's disease , 2011, Alzheimer's & Dementia.

[63]  O. Hansson,et al.  18F-AV-1451 tau PET imaging correlates strongly with tau neuropathology in MAPT mutation carriers , 2016, Brain : a journal of neurology.

[64]  Kazuhiko Yanai,et al.  Non-invasive assessment of Alzheimer's disease neurofibrillary pathology using 18F-THK5105 PET. , 2014, Brain : a journal of neurology.

[65]  M. Mintun,et al.  Kinetics of the Tau PET Tracer 18F-AV-1451 (T807) in Subjects with Normal Cognitive Function, Mild Cognitive Impairment, and Alzheimer Disease , 2016, The Journal of Nuclear Medicine.

[66]  K. Davis,et al.  Dissociation of neuropathology from severity of dementia in late-onset Alzheimer disease , 2006, Neurology.

[67]  H. Kolb,et al.  [18F]T807, a novel tau positron emission tomography imaging agent for Alzheimer's disease , 2013, Alzheimer's & Dementia.

[68]  Shuo Zhang,et al.  Predictive Accuracy of Amyloid Imaging for Progression From Mild Cognitive Impairment to Alzheimer Disease With Different Lengths of Follow-up , 2014, Medicine.

[69]  H. Arai,et al.  18F-THK5351: A Novel PET Radiotracer for Imaging Neurofibrillary Pathology in Alzheimer Disease , 2016, The Journal of Nuclear Medicine.

[70]  K. Jellinger,et al.  Correlation of Alzheimer Disease Neuropathologic Changes With Cognitive Status: A Review of the Literature , 2012, Journal of neuropathology and experimental neurology.

[71]  C. Rowe,et al.  Aβ-amyloid and Tau Imaging in Dementia. , 2017, Seminars in nuclear medicine.

[72]  Keith A. Johnson,et al.  Neuropathology of Cognitively Normal Elderly , 2003, Journal of neuropathology and experimental neurology.

[73]  A. Drzezga,et al.  Elevated in vivo [18F]‐AV‐1451 uptake in a patient with progressive supranuclear palsy , 2017, Movement disorders : official journal of the Movement Disorder Society.

[74]  Karl J. Friston,et al.  CHAPTER 2 – Statistical parametric mapping , 2007 .

[75]  L. Grinberg,et al.  Neuropathologic features associated with Alzheimer disease diagnosis , 2011, Neurology.

[76]  Janna H. Neltner,et al.  Primary age-related tauopathy (PART): a common pathology associated with human aging , 2014, Acta Neuropathologica.

[77]  Alistair Burns,et al.  Observations on the brains of demented old people. B.E. Tomlinson, G. Blessed and M. Roth, Journal of the Neurological Sciences (1970) 11, 205–242; (1968) 7, 331–356 , 1997 .