Taxonomy Based Image Retrieval : Taxonomy Based Image Retrieval using Data from Multiple Sources

With a multitude of images available on the Internet, how do we find what we are looking for? This project tries to determine how much the precision and recall of search queries is improved by usin ...

[1]  Shih-Fu Chang,et al.  Image Retrieval: Current Techniques, Promising Directions, and Open Issues , 1999, J. Vis. Commun. Image Represent..

[2]  Jitendra Malik,et al.  Color- and texture-based image segmentation using EM and its application to content-based image retrieval , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[3]  Hinrich Schütze,et al.  Introduction to information retrieval , 2008 .

[4]  Peter Willett,et al.  The Porter stemming algorithm: then and now , 2006, Program.

[5]  Trevor Darrell,et al.  Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation , 2013, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[6]  Cordelia Schmid,et al.  Combining attributes and Fisher vectors for efficient image retrieval , 2011, CVPR 2011.

[7]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[8]  Yixin Chen,et al.  An unsupervised learning approach to content-based image retrieval , 2003, Seventh International Symposium on Signal Processing and Its Applications, 2003. Proceedings..

[9]  Gerard Salton,et al.  Term-Weighting Approaches in Automatic Text Retrieval , 1988, Inf. Process. Manag..

[10]  S. Sitharama Iyengar,et al.  Content based image retrieval systems , 1999, Proceedings 1999 IEEE Symposium on Application-Specific Systems and Software Engineering and Technology. ASSET'99 (Cat. No.PR00122).

[11]  W. Pitts,et al.  A Logical Calculus of the Ideas Immanent in Nervous Activity (1943) , 2021, Ideas That Created the Future.

[12]  Mohan S. Kankanhalli,et al.  Shape Measures for Content Based Image Retrieval: A Comparison , 1997, Inf. Process. Manag..

[13]  Karen Kukich,et al.  Techniques for automatically correcting words in text , 1992, CSUR.

[14]  Simon Haykin,et al.  GradientBased Learning Applied to Document Recognition , 2001 .

[15]  Jane Greenberg,et al.  Metadata Extraction and Harvesting , 2004 .

[16]  Ning-San Chang,et al.  A Relational Database System for Images , 1980, Pictorial Information Systems.

[17]  Thomas S. Huang,et al.  Relevance feedback: a power tool for interactive content-based image retrieval , 1998, IEEE Trans. Circuits Syst. Video Technol..

[18]  Peter Willett,et al.  An evaluation of some conflation algorithms for information retrieval , 1981 .

[19]  Euripides G. M. Petrakis,et al.  Semantic similarity methods in wordNet and their application to information retrieval on the web , 2005, WIDM '05.

[20]  Larry S. Davis,et al.  A Corner-Finding Algorithm for Chain-Coded Curves , 1977, IEEE Transactions on Computers.

[21]  Minh N. Do,et al.  Wavelet-based texture retrieval using generalized Gaussian density and Kullback-Leibler distance , 2002, IEEE Trans. Image Process..

[22]  Nikhil Ketkar,et al.  Convolutional Neural Networks , 2021, Deep Learning with Python.

[23]  Thomas Mensink,et al.  Compressed Fisher Vectors for Large-Scale Image Classification , 2013 .

[24]  Michael Stonebraker,et al.  Chabot: Retrieval from a Relational Database of Images , 1995, Computer.

[25]  Antoine Geissbühler,et al.  A Review of Content{Based Image Retrieval Systems in Medical Applications { Clinical Bene(cid:12)ts and Future Directions , 2022 .

[26]  Christos Faloutsos,et al.  Efficient and effective Querying by Image Content , 1994, Journal of Intelligent Information Systems.

[27]  Michael S. Bernstein,et al.  ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.

[28]  Yong Wang,et al.  Combining global, regional and contextual features for automatic image annotation , 2009, Pattern Recognit..

[29]  Alireza Khotanzad,et al.  Invariant Image Recognition by Zernike Moments , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[31]  Marcel Worring,et al.  Content-Based Image Retrieval at the End of the Early Years , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[32]  Trevor Darrell,et al.  Caffe: Convolutional Architecture for Fast Feature Embedding , 2014, ACM Multimedia.

[33]  C. Brodley,et al.  Decision tree classification of land cover from remotely sensed data , 1997 .

[34]  Dumitru Erhan,et al.  Going deeper with convolutions , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[35]  Julie Beth Lovins,et al.  Development of a stemming algorithm , 1968, Mech. Transl. Comput. Linguistics.

[36]  Nicu Sebe,et al.  Content-based multimedia information retrieval: State of the art and challenges , 2006, TOMCCAP.

[37]  Fei-Fei Li,et al.  Hierarchical semantic indexing for large scale image retrieval , 2011, CVPR 2011.

[38]  Latifur Khan,et al.  Image annotations by combining multiple evidence & wordNet , 2005, ACM Multimedia.

[39]  Martin F. Porter,et al.  An algorithm for suffix stripping , 1997, Program.

[40]  James Ze Wang,et al.  Image retrieval: Ideas, influences, and trends of the new age , 2008, CSUR.

[41]  Ishwar K. Sethi,et al.  Mining association rules between low-level image features and high-level concepts , 2001, SPIE Defense + Commercial Sensing.

[42]  Andrew Zisserman,et al.  Video Google: a text retrieval approach to object matching in videos , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[43]  Nello Cristianini,et al.  An Introduction to Support Vector Machines and Other Kernel-based Learning Methods , 2000 .

[44]  Thomas S. Huang,et al.  Relevance feedback in content-based image retrieval: some recent advances , 2002, Inf. Sci..

[45]  George A. Miller,et al.  WordNet: A Lexical Database for English , 1995, HLT.

[46]  Yo-Sung Ho,et al.  Content-based event retrieval using semantic scene interpretation for automated traffic surveillance , 2001, IEEE Trans. Intell. Transp. Syst..

[47]  Thijs Westerveld,et al.  Image Retrieval: Content versus Context , 2000, RIAO.

[48]  F ROSENBLATT,et al.  The perceptron: a probabilistic model for information storage and organization in the brain. , 1958, Psychological review.

[49]  Ying Liu,et al.  A survey of content-based image retrieval with high-level semantics , 2007, Pattern Recognit..

[50]  T M Lehmann,et al.  Content-based Image Retrieval in Medical Applications , 2004, Methods of Information in Medicine.

[51]  Anil K. Jain,et al.  Artificial Neural Networks: A Tutorial , 1996, Computer.

[52]  Ming Yang,et al.  Contextual weighting for vocabulary tree based image retrieval , 2011, 2011 International Conference on Computer Vision.

[53]  Mihai Surdeanu,et al.  The Stanford CoreNLP Natural Language Processing Toolkit , 2014, ACL.

[54]  Anne Gilliland-Swetland,et al.  Introduction to Metadata: Pathways to Digital Information , 1998 .

[55]  T.W. Rauber,et al.  Shape description by UNL Fourier features-an application to handwritten character recognition , 1992, Proceedings., 11th IAPR International Conference on Pattern Recognition. Vol.II. Conference B: Pattern Recognition Methodology and Systems.