Closed network growth of fullerenes

Tremendous advances in nanoscience have been made since the discovery of the fullerenes; however, the formation of these carbon-caged nanomaterials still remains a mystery. Here we reveal that fullerenes self-assemble through a closed network growth mechanism by incorporation of atomic carbon and C(2). The growth processes have been elucidated through experiments that probe direct growth of fullerenes upon exposure to carbon vapour, analysed by state-of-the-art Fourier transform ion cyclotron resonance mass spectrometry. Our results shed new light on the fundamental processes that govern self-assembly of carbon networks, and the processes that we reveal in this study of fullerene growth are likely be involved in the formation of other carbon nanostructures from carbon vapour, such as nanotubes and graphene. Further, the results should be of importance for illuminating astrophysical processes near carbon stars or supernovae that result in C(60) formation throughout the Universe.

[1]  H. Shinohara ESR Studies on Endohedral Metallofullerenes , 1999 .

[2]  Jan Cami,et al.  Detection of C60 and C70 in a Young Planetary Nebula , 2010, Science.

[3]  M. Jarrold,et al.  Carbon Clusters Containing Two Metal Atoms: Structures, Growth Mechanism, and Fullerene Formation , 1996 .

[4]  R. Smalley,et al.  Fullerenes with Metals Inside. , 1991 .

[5]  Robert L. Whetten,et al.  Coalescence reactions of fullerenes , 1993 .

[6]  F. Verdun,et al.  Fourier Transforms in NMR, Optical, and Mass Spectrometry: A User's Handbook , 1990 .

[7]  Yurii E. Lozovik,et al.  Formation and growth of carbon nanostructures: fullerenes, nanoparticles, nanotubes and cones , 1997 .

[8]  J. Bohr,et al.  C60 a new form of carbon , 1992 .

[9]  Michael T. Bowers,et al.  Experimental evidence for the formation of fullerenes by collisional heating of carbon rings in the gas phase , 1993, Nature.

[10]  N. Goroff Mechanism of Fullerene Formation , 1996 .

[11]  M. Dresselhaus,et al.  CVD synthesis of single-walled carbon nanotubes from gold nanoparticle catalysts. , 2007, Journal of the American Chemical Society.

[12]  M. Jarrold,et al.  Annealing Carbon Cluster Ions: A Mechanism for Fullerene Synthesis , 1994 .

[13]  H. W. Kroto,et al.  The stability of the fullerenes Cn, with n = 24, 28, 32, 36, 50, 60 and 70 , 1987, Nature.

[14]  C. Beavers,et al.  Very large, soluble endohedral fullerenes in the series La2C90 to La2C138: isolation and crystallographic characterization of La2@D5(450)-C100. , 2011, Journal of the American Chemical Society.

[15]  H. Cooper,et al.  Direct detection and quantitation of He@C60 by ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry , 2002, Journal of the American Society for Mass Spectrometry.

[16]  J. Heath Synthesis of C60from Small Carbon Clusters: A Model Based on Experiment and Theory , 1992 .

[17]  Robert Jones,et al.  LDA Calculations Using a Basis of Gaussian Orbitals , 2000 .

[18]  Yong Qian,et al.  Metal-catalyst-free growth of single-walled carbon nanotubes on substrates. , 2009, Journal of the American Chemical Society.

[19]  You Lin,et al.  An extended defect in graphene as a metallic wire. , 2010, Nature nanotechnology.

[20]  S. Beu,et al.  Open trapped ion cell geometries for Fourier transform ion cyclotron resonance mass spectrometry , 1992 .

[21]  Morinobu Endo,et al.  Formation of Carbon Nanofibers , 1992 .

[22]  Jun Li,et al.  Carbon arc production of heptagon-containing fullerene[68] , 2011, Nature communications.

[23]  S. Iijima,et al.  Direct evidence for atomic defects in graphene layers , 2004, Nature.

[24]  C. P. Ewels,et al.  Adatoms and nanoengineering of carbon , 2001 .

[25]  A. Marshall,et al.  Fourier transform ion cyclotron resonance mass spectrometry: a primer. , 1998, Mass spectrometry reviews.

[26]  Mills,et al.  Quantum and thermal effects in H2 dissociative adsorption: Evaluation of free energy barriers in multidimensional quantum systems. , 1994, Physical review letters.

[27]  Edward Van Keuren,et al.  Endohedral fullerenes for organic photovoltaic devices. , 2009, Nature materials.

[28]  S. Anderson,et al.  Fullerene (C61+) production and decomposition in carbon-13 (1+) + fullerene (C60) collisions: carbon-atom exchange and the fragmentation pattern as a function of energy , 1992 .

[29]  Francis R. Verdun,et al.  Chapter 7 – Fourier transform ion cyclotron resonance mass spectrometry , 1990 .

[30]  Patrick R. Briddon,et al.  Rapid iterative method for electronic-structure eigenproblems using localised basis functions , 2008, Comput. Phys. Commun..

[31]  A. Marshall,et al.  Predator data station: A fast data acquisition system for advanced FT-ICR MS experiments , 2011 .

[32]  P. Bahr,et al.  Sampling: Theory and Applications , 2020, Applied and Numerical Harmonic Analysis.

[33]  Rodney S. Ruoff,et al.  Fullerenes : chemistry, physics, and technology , 2000 .

[34]  Stephan Irle,et al.  The C60 formation puzzle "solved": QM/MD simulations reveal the shrinking hot giant road of the dynamic fullerene self-assembly mechanism. , 2006, The journal of physical chemistry. B.

[35]  N. Besley,et al.  Direct transformation of graphene to fullerene. , 2010, Nature chemistry.

[36]  E. Peeters,et al.  Fullerenes in Circumstellar and Interstellar Environments , 2011, Proceedings of the International Astronomical Union.

[37]  T. Baum,et al.  Fullerenes and their ions in hydrocarbon flames , 1994 .

[38]  E. Peeters,et al.  Carbonaceous molecules in the oxygen-rich circumstellar environment of binary post-AGB stars: ⋆ , 2011, 1110.5996.

[39]  W. D. de Heer,et al.  Carbon Nanotubes--the Route Toward Applications , 2002, Science.

[40]  M. Jarrold,et al.  The effect of hydrogen on the formation of carbon nanotubes and fullerenes , 1995 .

[41]  Alan G. Marshall,et al.  Stored waveform inverse Fourier transform (SWIFT) ion excitation in trapped-ion mass spectometry: Theory and applications , 1996 .

[42]  D. Huffman,et al.  Solid C60: A New Form of Carbon. , 1991 .

[43]  J. Seiber Status and Prospects , 2005 .

[44]  Chang Liu,et al.  Metal-catalyst-free growth of single-walled carbon nanotubes. , 2009, Journal of the American Chemical Society.

[45]  R. Smalley,et al.  Self-assembly of the fullerenes , 1992 .

[46]  R. Price,et al.  First soluble M@C60 derivatives provide enhanced access to metallofullerenes and permit in vivo evaluation of Gd@C60[C(COOH)2]10 as a MRI contrast agent. , 2003, Journal of the American Chemical Society.

[47]  Jean M. J. Fréchet,et al.  Polymer—Fullerene Composite Solar Cells. , 2008 .

[48]  H. Kroto,et al.  C 60 Buckminsterfullerene , 1990 .

[49]  Chunhua Yan,et al.  Copper catalyzing growth of single-walled carbon nanotubes on substrates. , 2006, Nano letters.

[50]  S. Goedecker,et al.  Relativistic separable dual-space Gaussian pseudopotentials from H to Rn , 1998, cond-mat/9803286.

[51]  M. Jarrold,et al.  Annealing C60+: Synthesis of Fullerenes and Large Carbon Rings , 1993, Science.

[52]  Feng Zhu,et al.  Two I(h)-symmetry-breaking C60 isomers stabilized by chlorination. , 2008, Nature Materials.

[53]  SUPARNA DUTTASINHA,et al.  Graphene: Status and Prospects , 2009, Science.