Approximation Algorithms for Edge-Dilation k-Center Problems
暂无分享,去创建一个
[1] Éva Tardos,et al. An approximation algorithm for the generalized assignment problem , 1993, Math. Program..
[2] John Moy,et al. OSPF Version 2 , 1998, RFC.
[3] J. Plesník. On the computational complexity of centers locating in a graph , 1980 .
[4] David Peleg,et al. (1 + εΒ)-spanner constructions for general graphs , 2001, STOC '01.
[5] A. Frieze,et al. A simple heuristic for the p-centre problem , 1985 .
[6] Éva Tardos,et al. Approximation algorithms for facility location problems (extended abstract) , 1997, STOC '97.
[7] David S. Johnson,et al. Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .
[8] D. Hochbaum,et al. A best possible approximation algorithm for the k--center problem , 1985 .
[9] Lenore Cowen,et al. Compact routing with minimum stretch , 1999, SODA '99.
[10] George L. Nemhauser,et al. Easy and hard bottleneck location problems , 1979, Discret. Appl. Math..
[11] D. Shmoys,et al. An improved approximation algorithm for the generalized assignment problem , 1993 .
[12] Ján Plesník,et al. A heuristic for the p-center problems in graphs , 1987, Discret. Appl. Math..
[13] David Peleg,et al. An Optimal Synchronizer for the Hypercube , 1989, SIAM J. Comput..
[14] David B. Shmoys,et al. A Best Possible Heuristic for the k-Center Problem , 1985, Math. Oper. Res..
[15] Samir Khuller,et al. The Capacitated K-Center Problem , 2000, SIAM J. Discret. Math..
[16] Jiawei Zhang,et al. Approximation algorithms for facility location problems , 2004 .
[17] David B. Shmoys,et al. Approximation algorithms for facility location problems , 2000, APPROX.