Entangling identical bosons in optical tweezers via exchange interaction

We first devise a scheme to perform a universal entangling gate via controlled collisions between pairs of atomic qubits trapped with optical tweezers. Second, we present a modification to this scheme to allow for the preparation of atomic Bell pairs via selective excitation, suitable for quantum-information-processing applications that do not require universality. Both these schemes are enabled by the inherent symmetries of identical composite particles, as originally proposed by Hayes et al. Our scheme provides a technique for producing weighted graph states, entangled resources for quantum communication, and a promising approach to performing a "loophole free" Bell test in a single laboratory.

[1]  P. Zoller,et al.  State-dependent, addressable subwavelength lattices with cold atoms , 2008, 0801.0600.

[2]  B. Sanders,et al.  Entanglement of group-II-like atoms with fast measurement for quantum information processing , 2007, 0711.0044.

[3]  William D. Phillips,et al.  Controlled exchange interaction between pairs of neutral atoms in an optical lattice , 2007, Nature.

[4]  P. Grangier,et al.  Two-dimensional transport and transfer of a single atomic qubit in optical tweezers , 2007, 0705.0312.

[5]  M. Raizen,et al.  Quantum many-body culling: production of a definite number of ground-state atoms in a bose-einstein condensate. , 2007, Physical review letters.

[6]  I. Deutsch,et al.  Quantum logic via the exchange blockade in ultracold collisions. , 2006, Physical review letters.

[7]  M. Raizen,et al.  Direct observation of sub-Poissonian number statistics in a degenerate bose gas. , 2005, Physical review letters.

[8]  T. Hänsch,et al.  Controlled collisions for multi-particle entanglement of optically trapped atoms , 2003, Nature.

[9]  I. Deutsch,et al.  Quantum state control via trap-induced shape resonance in ultracold atomic collisions. , 2003, Physical review letters.

[10]  M. Lewenstein,et al.  Quantum computing in optical microtraps based on the motional states of neutral atoms , 2002, quant-ph/0206096.

[11]  Eric Charron,et al.  Optimizing a phase gate using quantum interference. , 2002, Physical review letters.

[12]  M. Raizen,et al.  Quantum tweezer for atoms. , 2002, Physical review letters.

[13]  D. Pritchard,et al.  Transport of Bose-Einstein condensates with optical tweezers. , 2001, Physical review letters.

[14]  I. Deutsch,et al.  Quantum logic for trapped atoms via molecular hyperfine interactions , 2001, quant-ph/0107136.

[15]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[16]  J. Cirac,et al.  Long-distance quantum communication with atomic ensembles and linear optics , 2001, Nature.

[17]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[18]  Lukin,et al.  Fast quantum gates for neutral atoms , 2000, Physical review letters.

[19]  C. Joachain,et al.  Quantum Mechanics , 2000 .

[20]  Isaac L. Chuang,et al.  Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations , 1999, Nature.

[21]  I. Chuang,et al.  Quantum Teleportation is a Universal Computational Primitive , 1999, quant-ph/9908010.

[22]  Innsbruck,et al.  Quantum gates with neutral atoms: Controlling collisional interactions in time-dependent traps , 1999, quant-ph/9905013.

[23]  Wolfgang Dür,et al.  Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication , 1998 .

[24]  P. Zoller,et al.  Entanglement of Atoms via Cold Controlled Collisions , 1998, quant-ph/9810087.

[25]  J. Linnett,et al.  Quantum mechanics , 1975, Nature.