Structural and Mechanistic Insight into the Listeria monocytogenes Two-enzyme Lipoteichoic Acid Synthesis System

Background: Listeria monocytogenes lipoteichoic acid is synthesized by the LtaP/LtaS two-enzyme system. Results: Structural analysis reveals a second glycerolphosphate binding site in LtaS important for in vitro and in vivo enzyme function. Conclusion: These results suggest a binding mode for the lipoteichoic acid chain during polymerization. Significance: The identified binding site in LtaS could become a target for antibiotic development. Lipoteichoic acid (LTA) is an important cell wall component required for proper cell growth in many Gram-positive bacteria. In Listeria monocytogenes, two enzymes are required for the synthesis of this polyglycerolphosphate polymer. The LTA primase LtaPLm initiates LTA synthesis by transferring the first glycerolphosphate (GroP) subunit onto the glycolipid anchor and the LTA synthase LtaSLm extends the polymer by the repeated addition of GroP subunits to the tip of the growing chain. Here, we present the crystal structures of the enzymatic domains of LtaPLm and LtaSLm. Although the enzymes share the same fold, substantial differences in the cavity of the catalytic site and surface charge distribution contribute to enzyme specialization. The eLtaSLm structure was also determined in complex with GroP revealing a second GroP binding site. Mutational analysis confirmed an essential function for this binding site and allowed us to propose a model for the binding of the growing chain.

[1]  K. Kurokawa,et al.  Pleiotropic Roles of Polyglycerolphosphate Synthase of Lipoteichoic Acid in Growth of Staphylococcus aureus Cells , 2008, Journal of bacteriology.

[2]  Garib N. Murshudov,et al.  JLigand: a graphical tool for the CCP4 template-restraint library , 2012, Acta crystallographica. Section D, Biological crystallography.

[3]  Anil Verma,et al.  Lysine Methylation as a Routine Rescue Strategy for Protein Crystallization , 2006, Structure.

[4]  M. Hecker,et al.  The extracellular and cytoplasmic proteomes of the non‐virulent Bacillus anthracis strain UM23C1‐2 , 2005, Proteomics.

[5]  N. Pannu,et al.  REFMAC5 for the refinement of macromolecular crystal structures , 2011, Acta crystallographica. Section D, Biological crystallography.

[6]  D. Portnoy,et al.  Construction, Characterization, and Use of Two Listeria monocytogenes Site-Specific Phage Integration Vectors , 2002, Journal of bacteriology.

[7]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[8]  J. Errington,et al.  Distinct and essential morphogenic functions for wall‐ and lipo‐teichoic acids in Bacillus subtilis , 2009, The EMBO journal.

[9]  L. L. Jackson,et al.  Lipoteichoic acid from Listeria monocytogenes , 1983, Journal of bacteriology.

[10]  W. Fischer Bacterial Phosphoglycolipids and Lipoteichoic Acids , 1990 .

[11]  D. Missiakas,et al.  Small molecule inhibitor of lipoteichoic acid synthesis is an antibiotic for Gram-positive bacteria , 2013, Proceedings of the National Academy of Sciences.

[12]  A. Gründling,et al.  Two-enzyme systems for glycolipid and polyglycerolphosphate lipoteichoic acid synthesis in Listeria monocytogenes , 2009, Molecular microbiology.

[13]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[14]  Terese Bergfors,et al.  Seeds to crystals. , 2003, Journal of structural biology.

[15]  Nathalie T. Reichmann,et al.  Location, synthesis and function of glycolipids and polyglycerolphosphate lipoteichoic acid in Gram-positive bacteria of the phylum Firmicutes , 2011, FEMS microbiology letters.

[16]  Jack Snoeyink,et al.  Nucleic Acids Research Advance Access published April 22, 2007 MolProbity: all-atom contacts and structure validation for proteins and nucleic acids , 2007 .

[17]  P. Freemont,et al.  Structure-based mechanism of lipoteichoic acid synthesis by Staphylococcus aureus LtaS , 2009, Proceedings of the National Academy of Sciences.

[18]  C. Bond,et al.  Structure of a human lysosomal sulfatase. , 1997, Structure.

[19]  P. Simpson,et al.  Enzymatic activities and functional interdependencies of Bacillus subtilis lipoteichoic acid synthesis enzymes , 2011, Molecular microbiology.

[20]  O. Schneewind,et al.  Synthesis of glycerol phosphate lipoteichoic acid in Staphylococcus aureus , 2007, Proceedings of the National Academy of Sciences.

[21]  H. Bouwer,et al.  Listeria monocytogenes regulates flagellar motility gene expression through MogR, a transcriptional repressor required for virulence. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[22]  G. Crooks,et al.  WebLogo: a sequence logo generator. , 2004, Genome research.

[23]  W. Fischer,et al.  The role of lipoteichoic acid biosynthesis in membrane lipid metabolism of growing Staphylococcus aureus. , 1984, European journal of biochemistry.

[24]  G. Siuzdak,et al.  Type I Signal Peptidase and Protein Secretion in Staphylococcus epidermidis , 2010, Journal of bacteriology.

[25]  A. Pühler,et al.  A Broad Host Range Mobilization System for In Vivo Genetic Engineering: Transposon Mutagenesis in Gram Negative Bacteria , 1983, Bio/Technology.

[26]  A. Gründling,et al.  Lipoteichoic acid synthesis and function in gram-positive bacteria. , 2014, Annual review of microbiology.

[27]  C. Kundrot,et al.  Structures of a hemoglobin-based blood substitute: insights into the function of allosteric proteins. , 1997, Structure.

[28]  D. Hinrichs,et al.  Adoptive transfer of immunity to Listeria monocytogenes. The influence of in vitro stimulation on lymphocyte subset requirements. , 1987, Journal of immunology.

[29]  P. Evans,et al.  Scaling and assessment of data quality. , 2006, Acta crystallographica. Section D, Biological crystallography.

[30]  I. Azuma,et al.  Structural studies on lipoteichoic acids from four Listeria strains , 1986, Journal of bacteriology.

[31]  A. Krogh,et al.  Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. , 2001, Journal of molecular biology.

[32]  A. Gründling,et al.  In Vitro Analysis of the Staphylococcus aureus Lipoteichoic Acid Synthase Enzyme Using Fluorescently Labeled Lipids , 2010, Journal of bacteriology.

[33]  P. Andrew Karplus,et al.  Linking Crystallographic Model and Data Quality , 2012, Science.

[34]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[35]  Fei Long,et al.  BALBES: a molecular-replacement pipeline , 2007, Acta crystallographica. Section D, Biological crystallography.

[36]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[37]  Randy J. Read,et al.  Overview of the CCP4 suite and current developments , 2011, Acta crystallographica. Section D, Biological crystallography.

[38]  Korbinian Strimmer,et al.  APE: Analyses of Phylogenetics and Evolution in R language , 2004, Bioinform..

[39]  D. Taron,et al.  Biosynthesis of D-alanyl-lipoteichoic acid: role of diglyceride kinase in the synthesis of phosphatidylglycerol for chain elongation , 1983, Journal of bacteriology.

[40]  Tatiana A. Tatusova,et al.  NCBI Reference Sequences: current status, policy and new initiatives , 2008, Nucleic Acids Res..

[41]  Massimiliano Pontil,et al.  PSICOV: precise structural contact prediction using sparse inverse covariance estimation on large multiple sequence alignments , 2012, Bioinform..

[42]  C. Malone,et al.  Proteolytic Cleavage Inactivates the Staphylococcus aureus Lipoteichoic Acid Synthase , 2011, Journal of bacteriology.