Revisiting the potassium feature of WASP-31b at high resolution

The analysis and interpretation of exoplanet spectra from time-series observations remains a significant challenge to our current understanding of exoplanet atmospheres, due to the complexities in understanding instrumental systematics. Previous observations of the hot Jupiter WASP-31b using transmission spectroscopy at low-resolution have presented conflicting results. Hubble Space Telescope (HST) observations detected a strong potassium feature at high significance (4.2\sigma), which subsequent ground-based spectro-photometry with the Very Large Telescope (VLT) failed to reproduce. Here, we present high-resolution observations (R>80,000) of WASP-31b with the UVES spectrograph, in an effort to resolve this discrepancy. We perform a comprehensive search for potassium using differential transit light curves, and integration over the planet's radial velocity. Our observations do not detect K absorption at the level previously reported with HST, consistent with the VLT observations. We measure a differential light curve depth $\Delta F = 0.00031 \pm 0.00036$ using 40\AA\ bins centred on the planet's K feature, and set an upper limit on the core line depth of $\Delta F \leq 0.007$ (3\sigma) at a few times the resolution limit ($\approx0.24\AA$). These results demonstrate that there are still significant limitations to our understanding of instrumental systematics even with our most stable space-based instrumentation, and that care must be taken when extracting narrow band signatures from low-resolution data. Confirming exoplanet features using alternative instruments and methodologies should be a priority, and confronting the limitations of systematics is essential to our future understanding of exoplanet atmospheres.

[1]  G. Hebrard,et al.  Transit spectrophotometry of the exoplanet HD189733b. I. Searching for water but finding haze with HST NICMOS , 2009, 0907.4991.

[2]  Simon Albrecht,et al.  The orbital motion, absolute mass and high-altitude winds of exoplanet HD 209458b , 2010, Nature.

[3]  University of Exeter,et al.  A new look at NICMOS transmission spectroscopy of HD 189733, GJ-436 and XO-1: no conclusive evidence for molecular features , 2010, 1010.1753.

[4]  David Charbonneau,et al.  A map of the day–night contrast of the extrasolar planet HD 189733b , 2007, Nature.

[5]  Tucson,et al.  HST hot-Jupiter transmission spectral survey: haze in the atmosphere of WASP-6b , 2014, 1411.4567.

[6]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[7]  S. Albrecht,et al.  Ground-based detection of sodium in the transmission spectrum of exoplanet HD209458b , 2008, 0805.0789.

[8]  I. Snellen A new method for probing the atmospheres of transiting exoplanets , 2004, astro-ph/0403101.

[9]  Nicolas B. Cowan,et al.  Inverting Phase Functions to Map Exoplanets , 2008, 0803.3622.

[10]  S. Aigrain,et al.  A Gemini ground-based transmission spectrum of WASP-29b: a featureless spectrum from 515 to 720 nm , 2012, 1210.7798.

[11]  Nicolas Crouzet,et al.  TRANSMISSION SPECTROSCOPY OF EXOPLANET XO-2b OBSERVED WITH HUBBLE SPACE TELESCOPE NICMOS , 2012, 1210.5275.

[12]  Cajo J. F. ter Braak,et al.  A Markov Chain Monte Carlo version of the genetic algorithm Differential Evolution: easy Bayesian computing for real parameter spaces , 2006, Stat. Comput..

[13]  A. Santerne,et al.  Hot Exoplanet Atmospheres Resolved with Transit Spectroscopy (HEARTS). I. Detection of hot neutral sodium at high altitudes on WASP-49b , 2017, 1702.00448.

[14]  Ian J. M. Crossfield,et al.  Observations of Exoplanet Atmospheres , 2015, 1507.03966.

[15]  G. Zhou,et al.  Exoplanetary atmospheric sodium revealed by orbital motion. Narrow-band transmission spectroscopy of HD 189733b with UVES , 2016, 1610.01610.

[16]  G. Nowak,et al.  Detection of sodium in the atmosphere of WASP-69b , 2017, 1710.06479.

[17]  Mark Clampin,et al.  INFRARED TRANSMISSION SPECTROSCOPY OF THE EXOPLANETS HD 209458b AND XO-1b USING THE WIDE FIELD CAMERA-3 ON THE HUBBLE SPACE TELESCOPE , 2013, 1302.1141.

[18]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[19]  T. Brown Transmission Spectra as Diagnostics of Extrasolar Giant Planet Atmospheres , 2001, astro-ph/0101307.

[20]  S. Czesla,et al.  The center-to-limb variation across the Fraunhofer lines of HD 189733; Sampling the stellar spectrum using a transiting planet , 2015, 1509.05657.

[21]  Ingo P. Waldmann,et al.  OF “COCKTAIL PARTIES” AND EXOPLANETS , 2011, 1106.1989.

[22]  David Charbonneau,et al.  Detection of Thermal Emission from an Extrasolar Planet , 2005 .

[23]  R. J. de Kok,et al.  Discovery of Water at High Spectral Resolution in the Atmosphere of 51 Peg b , 2017, 1701.07257.

[24]  G. Ballester,et al.  Hubble Space Telescope STIS Optical Transit Transmission Spectra of the Hot Jupiter HD 209458b , 2008, 0802.3864.

[26]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[27]  Joshua N. Winn,et al.  PARAMETER ESTIMATION FROM TIME-SERIES DATA WITH CORRELATED ERRORS: A WAVELET-BASED METHOD AND ITS APPLICATION TO TRANSIT LIGHT CURVES , 2009, 0909.0747.

[28]  Brian E. Granger,et al.  IPython: A System for Interactive Scientific Computing , 2007, Computing in Science & Engineering.

[29]  T. Henning,et al.  An extended hydrogen envelope of the extremely hot giant exoplanet KELT-9b , 2018, Nature Astronomy.

[30]  R. Gilliland,et al.  Detection of an Extrasolar Planet Atmosphere , 2001, astro-ph/0111544.

[31]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[32]  Princeton,et al.  Theoretical Transmission Spectra during Extrasolar Giant Planet Transits , 1999, astro-ph/9912241.

[33]  B. Scott Gaudi,et al.  EXOFAST: A Fast Exoplanetary Fitting Suite in IDL , 2012, 1206.5798.

[34]  S. Aigrain,et al.  HST hot-Jupiter transmission spectral survey: detection of potassium in WASP-31b along with a cloud deck and Rayleigh scattering , 2014, 1410.7611.

[35]  L. Koesterke,et al.  Sodium Absorption from the Exoplanetary Atmosphere of HD 189733b Detected in the Optical Transmission Spectrum , 2007, 0712.0761.

[36]  T. Barman,et al.  VARIATION IN THE PRE-TRANSIT BALMER LINE SIGNAL AROUND THE HOT JUPITER HD 189733B , 2016, 1605.01955.

[37]  E. Agol,et al.  Analytic Light Curves for Planetary Transit Searches , 2002, astro-ph/0210099.

[38]  Takayuki Kotani,et al.  High-resolution Spectroscopic Detection of TiO and a Stratosphere in the Day-side of WASP-33b , 2017, 1710.05276.

[39]  R. J. de Kok,et al.  Detection of water absorption in the day side atmosphere of HD 189733 b using ground-based high-resolution spectroscopy at 3.2 μm , 2013, 1307.1133.

[40]  Drake Deming,et al.  A continuum from clear to cloudy hot-Jupiter exoplanets without primordial water depletion , 2016, Nature.

[41]  S. Aigrain,et al.  The optical transmission spectrum of the hot Jupiter HAT-P-32b: clouds explain the absence of broad spectral features? , 2013, 1309.6998.

[42]  S. Aigrain,et al.  A Gaussian process framework for modelling instrumental systematics: application to transmission spectroscopy , 2011, 1109.3251.

[43]  Tsevi Mazeh,et al.  Correcting systematic effects in a large set of photometric light curves , 2005, astro-ph/0502056.

[44]  R. G. West,et al.  WASP-31b: A low-density planet transiting a metal-poor, late-F-type dwarf star , 2010, 1011.5882.

[45]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[46]  Drake Deming,et al.  Infrared radiation from an extrasolar planet , 2005, Nature.

[47]  T. Evans,et al.  VLT/FORS2 comparative transmission spectroscopy II: confirmation of a cloud-deck and Rayleigh scattering in WASP-31b, but no potassium? , 2017, 1702.02150.

[48]  Neale P. Gibson,et al.  Reliable inference of exoplanet light-curve parameters using deterministic and stochastic systematics models , 2014, 1409.5668.

[49]  R. Jayawardhana,et al.  A Search for Water in a Super-Earth Atmosphere: High-resolution Optical Spectroscopy of 55Cancri e , 2017, 1705.03022.

[50]  Simon Albrecht,et al.  The signature of orbital motion from the dayside of the planet τ Boötis b , 2012, Nature.